Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Ly
Xem chi tiết
Trần Quốc Đạt
14 tháng 1 2017 lúc 19:20

Nhân hai cái đơn thức đó lại đi rồi biết.

Nguyễn Khánh Ly
14 tháng 1 2017 lúc 19:34

Cảm ơn 

alibaba nguyễn
14 tháng 1 2017 lúc 19:40

Ta có \(\hept{\begin{cases}x^2yz^3=4^3\left(1\right)\\xy^2=4^9\left(2\right)\end{cases}}\)

Lấy (1).(2) vế theo vế ta được

\(x^3y^3z^3=4^3.4^9=4^{12}\)

\(\Leftrightarrow xyz=4^4=256\)  

Nguyễn Huế Anh
Xem chi tiết
Van Quoc
4 tháng 1 2017 lúc 9:14

x^3y^3z^3=4^12 ==> (xyz)^3 = (4^4)^3 hay xyz= 4^4=256

Lưu Hiền
4 tháng 1 2017 lúc 22:27

mình tính thế nào ra = 1 đấy bạn, ko biết đúng hay sai nhưng để mình xe lại, nếu đúng mình đăng cách giải cho bạn sau

Lưu Hiền
4 tháng 1 2017 lúc 22:38

cậu nhân 2 vế với nhau đi nhé

Như Ý Nguyễn Lê
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Thắng Nguyễn
7 tháng 10 2016 lúc 13:27

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-yz\right)}\)

\(\Rightarrow\left(x^2-yz\right)y\left(1-yz\right)=\left(y^2-xz\right)x\left(1-yz\right)\)

\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2=xy^2-x^2z-xy^3z+x^2yz^2\)

\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+x^2z+xy^3z-x^2yz^2=0\)

\(\Rightarrow xy\left(x-y\right)-xyz\left(x-y\right)\left(x+y+z\right)+z\left(x-y\right)\left(x+y\right)=0\)

\(\Rightarrow\left(x-y\right)\left[xy-xyz\left(x+y+z\right)+xz+yz\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy+yz+zx=0\end{cases}}\)

Mà \(x\ne y\) nên \(xy+xz+yz-xyz\left(x+y+z\right)=0\)

\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

Đpcm

Phan Thanh Tịnh
7 tháng 10 2016 lúc 13:04

Từ gt ta có : (x2 - yz)y(1 - yz) = (y2 - xz)x(1 - yz)

=> 0 = VT - VP = (x2y - x3yz - y2z - xy2z2) - (xy2 - xy3z  - x2z - x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)

= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)(xy + yz + xz - xyz(x + y + z)]

\(x\ne y\Rightarrow x-y\ne0\) nên xy + yz + xz - xyz(x + y + z) = 0 => xy + yz + xz = xyz(x + y + z)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

Nguyễn Anh Trường
7 tháng 10 2016 lúc 21:23

ĐƠN GIẢN

Siêu Nhân Lê
Xem chi tiết
Kuro Kazuya
24 tháng 1 2017 lúc 19:04

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}=\frac{x^2-y^2+xz-yz}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)

\(\Rightarrow\frac{x^2-yz}{x-xyz}=x+y+z\)

\(\Rightarrow x^2-yz=\left(x-xyz\right)\left(x+y+z\right)\)

\(\Rightarrow x^2-yz=x\left(x-xyz\right)+y\left(x-xyz\right)+z\left(x-xyz\right)\)

\(\Rightarrow x^2-yz=x^2-x^2yz+xy-xy^2z+xz-xyz^2\)

\(\Rightarrow-yz-xy-xz=-x^2yz-xy^2z-xyz^2\)

\(\Rightarrow-\left(yz+xy+xz\right)=-\left(x^2yz+xy^2z+xyz^2\right)\)

\(\Rightarrow yz+xy+xz=x^2yz+xy^2z+xyz^2\)

\(\Rightarrow yz+xy+xz=xyz\left(x+y+z\right)\)

Vậy nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) thì \(yz+xy+xz=xyz\left(x+y+z\right)\)

Nguyễn Thiều Công Thành
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết