Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hòa Nguyễn Trần Mỹ
Xem chi tiết
Hòa Nguyễn Trần Mỹ
Xem chi tiết
bsanizdabest
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 12 2021 lúc 8:11

\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)

Nguyễn Trần Mỹ Hòa
Xem chi tiết
Minh Triều
26 tháng 9 2015 lúc 10:43

\(VP=\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)

\(=\frac{x.\left(x+y\right)+2y.\left(x+y\right)}{x.\left(x^2-y^2\right)+2y.\left(x^2-y^2\right)}=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}=VT\left(\text{điều phải chứng minh}\right)\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
28 tháng 6 2017 lúc 15:26

Rút gọn phân thức

Lê Thanh Ngọc
Xem chi tiết
ngonhuminh
25 tháng 12 2016 lúc 14:51

\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)

\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)

Lê Thanh Ngọc
25 tháng 12 2016 lúc 15:30

?????????

MInemy Nguyễn
Xem chi tiết
Ninh Thanh Tú Anh
Xem chi tiết
Kiệt Nguyễn
29 tháng 11 2019 lúc 19:22

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

Khách vãng lai đã xóa
Kiệt Nguyễn
29 tháng 11 2019 lúc 19:26

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

Khách vãng lai đã xóa
MInemy Nguyễn
Xem chi tiết
Chu Quang Lượng
22 tháng 3 2020 lúc 15:33

\(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2\\ =\frac{4x^2+4y^2+z^2+8xy-4xz-4yz}{9}+\frac{4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\frac{4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\\ =\frac{9x^2+9y^2+9z^2}{9}=x^2+y^2+z^2\)

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
22 tháng 3 2020 lúc 15:35

- Ta có : \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2x+2z-y}{3}\right)^2\)

\(=\frac{\left(2x+2y-z\right)^2}{9}+\frac{\left(2y+2z-x\right)^2}{9}+\frac{\left(2x+2z-y\right)^2}{9}\)

\(=\frac{\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2x+2z-y\right)^2}{9}\)

\(=\frac{4x^2+4y^2+z^2+8xy-4yz-4xz+4y^2+4z^2+x^2+8yz-4xy-4xz+4x^2+4z^2+y^2+8xz-4xy-4yz}{9}\)

\(=\frac{9x^2+9y^2+9z^2}{9}=\frac{9\left(x^2+y^2+z^2\right)}{9}=x^2+y^2+z^2\)

Khách vãng lai đã xóa