Rút gọn:
4a^4 - 4a^2 -4a / (a^3 - 1)(a^2 + 4)
giúp em với nha !!! Mai nộp vở rồi .huhu
Q = \(\left(1-\dfrac{\sqrt{a}-4a}{1-4a}\right)\) : \(\left[1-\dfrac{1+2a-2\sqrt{a}\left(2\sqrt{a}+1\right)}{1-4a}\right]\) với a > 0, a ≠ \(\dfrac{1}{4}\)
Rút gọn
Giúp em với ạ ! Em cảm ơn !
Q = (1 - \(\dfrac{\sqrt{a}-4a}{1-4a}\)) : \(\left[1-\dfrac{1+2a-2\sqrt{a}\left(2\sqrt{a}+1\right)}{1-4a}\right]\)
= \(\left(\dfrac{1-4a-\sqrt{a}+4a}{1-4a}\right):\left[\dfrac{1-4a-1-2a+4a+2\sqrt{a}}{1-4a}\right]\)
= \(\dfrac{1-\sqrt{a}}{1-4a}:\left(\dfrac{-2a+2\sqrt{a}}{1-4a}\right)\)
= \(\dfrac{1-\sqrt{a}}{1-4a}.\dfrac{1-4a}{2\sqrt{a}\left(1-\sqrt{a}\right)}\)
= \(\dfrac{1}{2\sqrt{a}}\) = \(\dfrac{\sqrt{a}}{2a}\)
rút gọn biểu thức:\(\sqrt{4a^2+12a+9}+\sqrt{4a^2-12a+9}\) với\(-\dfrac{3}{2}\le a\le\dfrac{3}{2}\)
giúp tui nha,tui đang gấp lắm
\(\sqrt{4a^2+12a+9}+\sqrt{4a^2-12a+9}\) với \(-\dfrac{3}{2}\le a\le\dfrac{3}{2}\)
\(\sqrt{\left(2a+3\right)^3}+\sqrt{\left(2a-3\right)^3}\)
\(\left|2a+3\right|+\left|2a-3\right|\)
\(2a+3-2a+3\)
\(6\)
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)voix>0,x\ne1,kq=4a\)
đề iu cầu là rút gọn biểu thức ạ các bn giải giúp mk vs sáng mai phải nộp cô rồi ạ
\(A=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)
\(A=\left(\frac{4\sqrt{a}}{a-1}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)
\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}=\frac{4a\left(a+1\right)}{a-1}\)
....... Tới đây được chưa bạn?
M=(2/2a-b + 6b/b^2 - 4a^2 - 4/2a+b) : (1+ 4a^2+4b^2/4a^2-b^2)
a) Rút gọn biểu thức M
b) Tính giá trị biểu thức M khi a=1/3 và b=2
Viết rõ đề bài ra đc không ạ
Bài làm:
a) đkxđ: \(2a\ne\pm b\)
Ta có: \(M=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right)\div\left(\frac{1+4a^2+4b^2}{4a^2-b^2}\right)\)
\(M=\left[\frac{2\left(2a+b\right)-6b-4\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right].\left(\frac{\left(2a-b\right)\left(2a+b\right)}{4a^2+4b^2+1}\right)\)
\(M=\frac{4a+2b-6b-8a+4b}{4a^2+4b^2+1}\)
\(M=\frac{-4a}{4a^2+4b^2+1}\)
b) +Nếu: \(a=\frac{1}{3}\)và \(b=2\)
Khi đó GT của M là: \(M=\frac{-4.\frac{1}{3}}{4.\frac{1}{3^2}+4.2^2+1}=-\frac{12}{157}\)
Viết rõ đề ra nhá
rút gọn các biểu thức sau
c,\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\) d,\(5\sqrt{16a}-4\sqrt{25a}-2\sqrt{100a}+\sqrt{169a}\) với a ≥ 0
e,\(5\sqrt{4a}-4\sqrt{a^2}-\sqrt{100a}\) với a ≥ 0 f,\(3\sqrt{4a^6}-5^3\) với a ≤ 0
Rút gọn A=\(\frac{a^2+4a+4}{a^3+2a-4a-8}\)
rút gọn
\(\dfrac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\) với a > 0,5
\(=\dfrac{2\sqrt{5}\left|a\left(2a-1\right)\right|}{2a-1}=\dfrac{2a\left(2a-1\right)\sqrt{5}}{2a-1}=2a\sqrt{5}\)
\(=\dfrac{2\sqrt{5}\cdot a\left(2a-1\right)}{2a-1}=2a\sqrt{5}\)
Rút gọn A= \(\frac{a^2+4a+4}{a^3+2a-4a-8}\)
Lời giải:
$A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}=\frac{(a+2)^2}{a^2(a+2)-4(a+2)}=\frac{(a+2)^2}{(a+2)(a^2-4)}=\frac{(a+2)^2}{(a+2)(a+2)(a-2)}=\frac{(a+2)^2}{(a+2)^2(a-2)}=\frac{1}{a-2}$
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)