cho tam giác ABC có góc A=90độ, M là trung điểm BC. Chứng minh AM=1/2BC
Cho tam giác ABC có gócA=90° M là trung điểm của BC .Trên tia AM lấy D sao cho AM= MD
a } chứng minh AD= DC
b} Chứng minh BC vuông góc với AM
c} chứng minh AM=1/2BC
BÀI 1: Cho tam giác ABC có AB=AC.Tia phân giác của BÂC cắt BC tại điểm M.
a/Chứng minh rằng hình tam giác AMb= tam giác AMC và M là trung điểm của BC.
b/Tính góc AMB.
c/Vẽ ME // AB(E thuộc AC).Chứng minh rằng:góc EMC=góc ECM
d/Trên canh AB lấy điểm K sao cho AK =AE.Chứng minh rằng :KE//BC
BÀI 2:Cho tam giác ABC vuông tại A có M là trung điểm của BC
a)Tính góc B +góc C
b)Chọn điểm D sao cho M là trung điểm của AD.Chứng minh :tam giác AMB= tam giác DMC
c)Chứng minh ACvuoong góc CD
d)Chứng minh :AM=1/2BC
Cho tam giác ABC có góc A=90 độ, m là trung điểm của cạnh BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN. Chứng minh:
a) CN=AB và CN//AB
b)AM=1/2BC
a) Xét tam giác BMA và tam giác CMN:
BM=MC ( M là trung điểm của BC)
\(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)
AM=MN ( M là trung điểm của AN)
=>Tam giác BMA=tam giác CMN(c-g-c)
=>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)
mà chúng nằm ở vị trí so le trong
=>BA//NC
b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC
Xét ΔAMB và ΔNMC có :
MA=MN ( gt)
\(\widehat{M_1}\)= \(\widehat{M_2}\)(2 góc đối đỉnh )
MB =MC (gt)
Suy ra: ΔAMB=ΔNMC(c.g.c)
⇒ CN = AB ( 2 cạnh tương ứng )
⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )
Cho tam giác ABC góc A là góc vuông cho điểm M là trung điểm của BC .Chứng minh AM =1/2BC
can rat gap
Cho tam giác ABC có góc A =90độ, AG vuông góc BC, từ G kẻ GĐ vuông góc AB, GE vuông góc AC .Gọi M là điểm đối xứng với G quá E , gọi H là trung điểm của CG Chứng minh: a) DE = AG b) góc DHE=90độ c) DE // AM
a: Xét tứ giác ADGE có
góc ADG=góc AEG=góc EAD=90 độ
nên ADGE là hình chữ nhật
=>DE=AG
c: Xét tứ giác ADEM có
AD//EM
AD=EM
Do đó: ADEM là hình bình hành
=>DE//AM
Cho tam giác ABC, có M trung điểm BC và AM= 1/2BC. Chứng minh : tam giác ABC vuông
Cho tam giác ABC vuông tại A, M là trung điểm cạnh BC. Trên tia MA lấy điểm D sao cho M là trung điểm cua AD
a) Chứng minh tam giac AMB = tam giac DMC
b) Chứng minh DC vuông góc AC
c) AM = 1/2BC
a) Chứng minh tam giac AMB = tam giac DMC
Xét tam giác MAB và tam giác MDC, có
- MA = MD (M là trung điểm AD)
- MB = MD (M là trung điểm BD)
- Góc M đối nhau
=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh) (đpcm)
b) Chứng minh DC vuông góc AC
Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)
=> góc A1 + góc A2 = 90 độ
mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)
=> góc ADC + góc A2 = 90 độ
Xét tam giác CAD,
có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ
=> góc ACD = 90 độ
=> tam giác DAC vuông tại C
Ta có DC vuông góc AC tại C
và BA vuông góc AC tại A
=> BA // DC (đpcm)
c) AM = 1/2BC
Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)
Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:
Xét tứ giác ABDC có:
- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)
- DC // BA
=> tứ giác ABDC là hình bình hành
và có góc A vuông
=> tứ giác ABDC là hình chữ nhật
=> 2 đường chéo của hình chữ nhật là AD = BC
mà M là trung điểm của AD và BC
=> AM = 1/2 BC (đpcm)
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .
giúp mik nhanh câu c dc khum ạ
2 câu kia mik xong r
cảm ơn các bạn
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
Trên tia đối của tia MA, lấy điểm D sao cho MA=MD
Xét tứ giác ACDB có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AD
Do đó: ACDB là hình bình hành
Hình bình hành ACDB có \(\widehat{CAB}=90^0\)
nên ACDB là hình chữ nhật
Suy ra: BC=AD
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}BC\)