Cho hình thang cânABCD(AB//CDvàAB < CD).
Hạ BEvuông góc với DC(E∈DC).
Chứng minh rằng:DE=AB+DC/2.
Cho hình thang cân ABCD(AB//CDvàAB < CD). Hạ BEvuông góc với DC(E∈DC). Chứngminh rằng:DE=AB+DC/2.
Cho hình thang cân ABCD ( AB//CD, AB < CD). Hạ BE vuông góc với DC ( E thuộc DC) . Chứng minh \(DE=\frac{AB+DC}{2}\)
Từ D kẻ DA' vuông góc với AB
ABCD là hình thang cân nên AD = BC ; AB//DC
=> Khoảng cách từ điểm B đến DC bằng với khoảng cách từ điểm D đến AB
=> BE = DA'
Xét tam giác DA'A và tam giác BEC có :
BE = DA' (cmt ) ; DA'A = BEC ( = 90 độ ) ; AD = BC ( cmt )
=> Tam giác DA'A = Tam giác BEC ( ch-cgv )
=> S DA'A = S BEC
Mà S BEC + S ABED = S ABCD
S DA'A + S ABED = S A'BED
=> S ABCD = S A'BED
Dễ thấy A'BED là hình chữ nhật ( tự CM nhaa )
\(\Rightarrow S.A'BED=DE.BE\)
và \(S.ABCD=\frac{AB+DC}{2}.BE\)
\(\Rightarrow DE=\frac{AB+DC}{2}\) ( ĐPCM )
1. Cho hình thang ABCD với hai đáy AB, CD. Hai đường chéo AC, BD
cắt nhau tại E. Chứng minh rằng diện tích AED = diện tích BEC.
2.Cho hình thang ABCD với hai đáy AB, DC và biết DC = 3AB. Hai
đường chéo AC cắt BD tại E. Chứng minh rằng diện tích ADE = diện tích BCE
và tính tỷ số \(\dfrac{EA}{EC}\)
1. Cho hình thang ABCD với hai đáy AB, CD. Hai đường chéo AC, BD
cắt nhau tại E. Chứng minh rằng diện tích AED = diện tích BEC.
2.Cho hình thang ABCD với hai đáy AB, DC và biết DC = 3AB. Hai
đường chéo AC cắt BD tại E. Chứng minh rằng diện tích ADE = diện tích BCE
và tính tỷ số \(\dfrac{EA}{EC}\)
Cho hình thang ABCD(AB//CD). Hai đường chéo AC và BD cắt nhau tại I.
a/ Chứng minh : ΔIBA đồng dạng với ΔIDC.
b/ Chúng minh IA.ID=IB.IC
c/ Qua I kẻ HK vuông góc với AB và DC(H AB, K DC). Chứng minh
AB/DC=IH/IK
a: Xét ΔIBA và ΔIDC có
\(\widehat{IBA}=\widehat{IDC}\)
\(\widehat{AIB}=\widehat{CID}\)
Do đó: ΔIBA\(\sim\)ΔIDC
b: Ta có: ΔIBA\(\sim\)ΔIDC
nên IB/ID=IA/IC
hay \(IB\cdot IC=IA\cdot ID\)
Cho hình thang cân ABCD (AB//CD). Đường thẳng qua A vuông góc với AC cắt đường thẳng DC tại E, đường thẳng qua B vuông góc với BC cắt đường thẳng DC tại F.
a) Chứng minh rằng: tam giác AEC= tam giác BFD
b) Chứng minh rằng ABFE là hình thang cân
c) Gọi P là giao điểm của đường thẳng AE và đường thẳng BD. Q là giao điểm của đường thẳng BF và đường thẳng AC. Chứng minh rằng: tam giác APQ= tam giác BQP
cho ABCD là hình thang cân (AB//CD,AB<CD,góc ADC=60 độ),đường phân giác của góc ADC cắt AC,AB lần lượt tại I,M.Kẻ AE//BC(E thuộc DC).
a) chứng minh tam giác ADE là tam giác đều và DC=AB+AM.
b)Cho IA/IC=4/11 và MA-MB=6cm.Tính MB/AM và AM,MB.
Cho hình thang ABCD (AB//CD) trong đó 2 tia phân giác của góc A và góc B cắt nhau tại E . Chứng minh nếu CD=AD+BC thì E thuộc đáy DC
Kéo dài AE cắt CD tại M, kéo dài BE cắt CD tại N
=> ^BAM=^AMD (góc so le trong), mà ^BAM = ^DAM (đề bài) => ^DAM = ^AMD => tg ADM cân tại D => AD=DM
Chứng minh tương tự ta cũng có tg BNC cân tại C => BC=CN
=> AD+BC = DM+CN=DN+MN+MN+CM=(DN+MN+CM)+MN=CD+MN
Mà CD=AD+BC (theo đề bài) => MN=0 hay M trùng N chính là giao của AE và BE => E trùng M trùng N => E thuộc CD
tìm nghiệm của 3x^2-2x+1
Cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH, AK
a, chứng minh ΔBDC đồng dạng với ΔHBC
b, chứng minh BC2 = HC.DC
c, chứng minh ΔAKD đồng dạng với ΔBHC
d, cho BC=15cm, DC=25cm. tính HC, HD
e, tính diện tích hình thang ABCD