1, a, Cho B=79256+52985+a2(a thuộc N)
Chứng tỏ rằng B khong chia hết cho 10
Gọi A=n2+n+1(là số tự nhiên) Chứng tỏ rằng:
a,A khong chia hết cho 2
b,B khong chia hết cho 5
a) \(A=n^2+n+1=n.\left(n+1\right)+1\)
Ta có n.(n+1) chia hết cho 2 vì n và n + 1 là hai số tự nhiên liên tiếp.
=> n.(n+1) + 1 không chia hết cho 2 => A không chia hết cho 2 (đpcm)
b) Vì n và n + 1 là 2 số tự nhiên liên tiếp => Tích của chúng có chữ số tận cùng là 0,2,6.
=> n.(n+1) + 1 có chữ số tân cùng là 1,3,7 => n.(n+1) + 1 không chia hết cho 5 => A không chia hết cho 5 (đpcm)
42) a) Khi chia stn a cho 9,ta được số dư là 6.Hỏi số a có chia hết cho 3 không?
b) Khi chia stn a cho 12,ta được số dư là 9.Hỏi số a có chia hết cho 3 không? có chia hết cho 6 ko?
c) số 30.31.32.33.....40+111 có chia hết cho 37 không?
46)
a) Tích của 2 stn liên tiếp là 1 số chia hết cho 2
b) Với mọi n thuộc N , chứng tỏ rằng : n.(n+3) chia hết cho 2
c) với mọi n thuộc N ,chứng tỏ rằng :n^2+n+1 khong chia het cho 2
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
chứng tỏ rằng
a,34.2+1+2 chia hết cho 5(n thuộc N)
b,92.n+1+1 chia hết cho 10 (n thuộc N)
b, Vì 9^n với n bất kì đc số tận cùng =9
=>9^2n+1+1=...9+1=...0
Có tận cùng =0 suy ra 9^2n+1+1 chi hết cho 10(đpcm)
Bài 1Dùng 3 trong 4 số 5;4;3;2,hãy viết tất cả các số tự nhiên có 3 chữ số chia hết cho cả 3 số 2;3 và 9.
Bài 2 chứng tỏ rằng :
a) 1033+8 chia hết cho 18
b) 1010+14 chia hết cho 6
Bài 3 Chứng tỏ rằng với mọi số tự nhiên n,tích (n+7).(n+8) luôn chia hết cho 2
Bài 4 Cho n thuộc N*. Chứng tỏ rằng
a) (5n -1) chia hết cho 4
b) (10n + 18n - 1) chia hết cho 27
a)Các số tự nhiên chia hết cho 9 là :450;405;540;504
b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534
Tìm số tự nhiên x biết:
A.x+10 chia hết cho x+1
Bài 2. Biết rằng 7a+2b chia hết cho 13 ( với a,b thuộc N ).Chứng tỏ rằng 10a+b chia hết cho 13
Bài 1: chi A= m2 + m+1 với m thuộc N. Chứng tỏ rằng:
a) A không chia hết cho 2
b) A không chia hết cho 5
Bài 2: Cho P= 2+22+23+...+210
Chứng tỏ rằng:
a) P chia hết cho 3
b) P chia hết cho 31
Bài 3: cho Q=3+32+33+...+312
Chứng tỏ rằng:
a) Q chia hết cho 4
b) Q chia hết cho 10
c) Q chia hết cho 13
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Bài 3:
a,b) \(Q=3+3^2+3^3+...+3^{12}\)
\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)
\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)
Do đó \(Q\vdots 10; Q\vdots 4\)
c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)
\(=13(3+3^4+...+3^{10})\vdots 13\)
Ta có đpcm.
b)
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
Cho n số a1, a2, a3, ... , an mà mỗi số bằng 1 hoặc -1. Gọi Sn= a1.a2+a2.a3+a3.a4+...+an-1.an+an.a1
a) Chứng tỏ: S5 khác o
b) Chứng tỏ S6 khác 0
c) Chứng tỏ rằng: Sn=0 khi và chỉ khi n chia hết cho 4