cho \(\sqrt{x}+2\sqrt{y}=10.CMR:x+y\ge20\)
Cho \(\sqrt{x}+2\sqrt{y}=10\) . Chứng minh \(x+y\ge20\)
Áp dụng bđt Bunhiacopxki , ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)\)
\(\Rightarrow5\left(x+y\right)\ge100\Rightarrow x+y\ge20\) (đpcm)
cho \(\sqrt{x}+2\sqrt{y}=10\)chứng minh rằng \(x+y\ge20\)
Áp dụng BĐT Cauchy–Schwarz ta có:
\(\left(1^2+2^2\right)\left(x+y\right)\ge\left(\sqrt{x}+2\sqrt{y}\right)^2\)
<=> \(5\left(x+y\right)\ge100\)
<=> \(x+y\ge20\)
Dấu "=" xảy ra <=> \(x=4;\)\(y=16\)
ban duong quynh giang oi bdt ay phai la bunhiacopxki moi dung
Cho \(\sqrt{x}+2\sqrt{y}=10\) .CMR \(x+y\ge20\)
\(\sqrt{x}=10-2\sqrt{y}\)
\(\Rightarrow x+y=\left(10-2\sqrt{y}\right)^2+y=5y-40\sqrt{y}+100\)
\(=5\left(\sqrt{y}-4\right)^2+20\ge20\)
Cho \(\sqrt{x}+2\sqrt{y}=10.\) . Chứng minh \(x+y\)\(\ge20\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)\)
\(\Rightarrow x+y\ge\frac{10^2}{1^2+2^2}=20\)\(\Rightarrow x+y\ge20\)
cách khác:
Áp dụng bất đẳng thức Cô Si : ta có
\(x+4\ge2\sqrt{x.4}=4\sqrt{x}\left(1\right).\)
\(y+16\ge2\sqrt{y.16}=8\sqrt{y}\left(2\right).\)
cộng vế với vế (1) và (2) ta có : \(x+y+20\ge4\left(\sqrt{x}+2\sqrt{y}\right)=40.\)
=> \(x+y\ge20.\)dấu "=" xảy ra khi x = 4 ; y = 16
cho \(\sqrt{x}+\sqrt{y}=10\)CMR:x+y\(\ge\)20
Áp dụng bđt B.C.S có
\(\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(1^2+1^2\right)\ge\left(1\sqrt{x}+1\sqrt{y}\right)^2\Leftrightarrow\left(x+y\right)2\ge10^2\Leftrightarrow x+y\ge50\)
cho các số thực x,y thỏa mãn điều kiện sau
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\)
CMR:x=y
ĐKXĐ: x,y >1
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
Giả sử x=y
Khi đó:
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)
\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)
Luôn đúng
Vậy ta suy ra đpcm
Cho x,y thỏa mãn:
\(\sqrt{2014+x}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{2014+y}+\sqrt{2015-y}-\sqrt{2014-y}\)
\(CMR:x=y\)
chuyển vế nhân liên hợp để tạo nhân tử chung là x-y
\(Cho\sqrt{1+x}+\sqrt{1+y}=2\sqrt{1+a}\)
\(CMR:x+y\ge2a\)
\(\left(2\sqrt{1+a}\right)^2=4\left(1+a\right)=\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)
\(\Leftrightarrow\)\(x+y\ge2a\)
Áp dụng bđt Bunyakovsky: \(\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)
\(\Rightarrow4\left(a+1\right)\le2\left(x+y+2\right)\Leftrightarrow4a\le2\left(x+y\right)\Leftrightarrow x+y\ge2a\)
cho x;y;z dương sao cho: \(xy+yz+zx\ge\frac{1}{\sqrt{x^2+y^2+z^2}}.CMR:x+y+z\ge\sqrt{3}\)