Cho biểu thức P =( x -342) : 6 với giá trị nào của x thì biểu thức P = 0 Xin giúp đỡ
Cho biểu thức P =( x - 342 ) : 6 VỚI GIÁ TRỊ NÀO CÚA X THÌ BIỂU THỨC BẰNG P = 0
( x - 342 ) : 6 = 0
x - 342 = 0 : 6
x - 342 = 0
x = 0 + 342
x = 342
Cho biểu thức P=m -342
a) Tính giá trị của biểu thức P với x = 1000
b) Với giá trị nào của x thí biểu thức P có giá trị bằng 0 ?
a) P=X -342
= 1000 - 342
= 658
P = 0
=> X -342 = 0
=> X = 342
cho biểu thức F=8-2x/3x+2
a)Với giá trị nào của x thì biểu thức trên xác định.
b)Với giá trị nào của x thì biểu thức F=0.
c) Tìm x nguyên để F có giá trị nguyên.
d) Tìm x để F<0 .
a: ĐKXĐ: x<>-2/3
b: F=0
=>8-2x=0
=>x=4
d: F<0
=>(2x-8)/(3x+2)>0
=>x>4 hoặc x<-2/3
cho hai biểu thức : M=5x-3/8+6 ; N=x+5/6 với giá trị nào của x thì giá trị nào của biểu thức M lớn hơn giá trị của biểu thức N là 8 ?
a. Với giá trị nào của x thì biểu thức A = 1001 − | x + 9 | có giá trị lớn nhất? a. Với giá trị nào của x thì biểu thức A = 1001 − | x + 9 | có giá trị lớn nhất? Tìm giá trị đó
a. Với giá trị nào của x thì biểu thức A = 1001 − | x + 9 | có giá trị lớn nhất? Tìm giá trị đó. b. Với giá trị nào của y thì biểu thức B = | y − 2 | + 34 có giá trị nhỏ nhất? Tìm giá trị đó.
ai làm được tôi tick cho
Cho biểu thức
3(2x-3)(3x+2)-82(x+4)(4x-3)+9x(4-x)-6
Với giá trị nào của x thì biểu thức có giá trị bằng 0?
thật ra thì mình cũng có làm rồi nhưng méo ra kết quả nên Giải giúp mình với~~
1) Với giá trị nào của x thì biểu thức sau là giá trị dương: \(\frac{x+3}{x-5}\)
Mong m.n giúp đỡ sẽ like cho bất kì ai giái đc bài này giúp nha T_T
Để x+3/x-5 thuộc N
=>x+3 chia hết x-5
=>x-5+8 chia hết x-5
=>8 chia hết x-5
=>x-5 thuộc Ư(8)={...}
Tới đây bạn tự xét
bạn à cách này sai ùi thầy mình giải khác
Bài 1:Tìm giá trị nhỏ nhất của biểu thức:
M=\(\frac{X^2+1}{X-1}\)với x>1
Bài 2: Tìm giá trị nhỏ nhất của biểu thức:
N=(x-1).(x+5).(\(x^2\)+4x+5)
Xin chân thành cảm ơn các bạn đã giúp đỡ mình !
b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)
=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)
Dấu "=" xảy ra khi \(x=\sqrt{2}+1\)
c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)
\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4
a) Với giá trị nào của x thì giá trị biểu thức -1 / 4x + 2 < 0
b) Chứng minh biểu thức -x^2 - 2x - 3 / x^2 + 1 < 0 với mọi x
a)\(\frac{-1}{4x+2}< 0\)
\(\Leftrightarrow4x+2>0\)
\(\Leftrightarrow4x>-2\)
\(\Leftrightarrow x>\frac{-1}{2}\)
Vậy ...
b)\(\frac{-x^2-2x-3}{x^2+1}\)
Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)
Lại có \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\)
\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)