Tìm giá trị lớn nhất của \(\frac{x^4+21}{x^4+3}\)
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Tìm giá trị nguyên lớn nhất của x thỏa mãn:
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
Bài giải
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}-\frac{4}{7}< x+\frac{4}{7}-\frac{4}{7}< \frac{7}{12}-\frac{4}{7}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1,5...< x< 0,01...\)
\(\Rightarrow\text{ }x=-1\)
1. Tìm x , y thuộc Z sao cho: |x+3| + |7-y| = 0
2. Tìm giá trị của x để A lớn nhất. Tìm giá trị lớn nhất của A: A= 2015 - |x+1|
3. Tìm x:
a, |x+3| - 13 = -7
b, 21 - |x-9| = 21
c, |x-4| - 7 = -3
d, 13 - |x+10| = 13
\(B=\left(1-\frac{x^2}{x+2}\right)\cdot\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
a, Tìm điều kiện của x để giá trị của biểu thức B được xác định
b,Rút gọn biểu thức B
c,Tính giá trị của B khi x=-3
d, Tìm giá trị của x để biểu thức B có giá trị lớn nhất. Tìm giá trị lớn nhất đó
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
a) tìm x để biểu thức sau có giá trị lớn nhất và giá trị nhỏ nhất của
\(A=|x-\frac{2}{3}|-4\)
b) tìm giá trị lớn nhất của biểu thức
\(B=2-|x+\frac{5}{6}|\) ; \(C=-|x+\frac{2}{3}|-4\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
Tìm giá trị lớn nhất của C = (3x + 4*(căn bậc hai của x) - 4) : x
Tìm giá trị lớn nhất của \(C=\frac{\left(3x+4\sqrt{x}-4\right)}{x}\)
Cho P=\(\frac{x-21}{x+9}\)(x thuộc Z)
a)P có thể nhận giá trị bằng \(\sqrt{4}\)được không?
b)Tìm các giá trị nguyên của P
c) Tìm giá trị nhỏ nhất và lớn nhất của P
Bài 1: Tìm giá trị nhỏ nhất
a)A=\(x^4+\left(y-2\right)^2-8\)
b)B=\(|x-3|+|x-7|\)
Bài 2: Tìm các số nguyên x và y, biết:
a) xy+3x-7y=21
b)\(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Bài 3:
a) Tìm các giá trị nguyên của x để
a1) A có giá trị nhỏ nhất? A có giá trị lớn nhất?
a2) B=\(\frac{14-x}{4-x}\)có giá trị lớn nhất?
C=\(\frac{7-x}{x-5}\)có giá trị nhỏ nhất?
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
Bài 1: a) Ta có: \(x^4=\left(x^2\right)^2\ge0\left(\forall x\in Z\right)\)
\(\left(y-2\right)^2\ge0\left(\forall y\in Z\right)\)
\(\Rightarrow A=x^4+\left(y-2\right)^2+\left(-8\right)\ge-8\)
Dấu "=" xảy ra <=> x = 0
(y-2)2 = 0 <=> y - 2 = 0 <=> y = 2
Vậy Amin = -8 khi và chỉ khi x = 0 và y = 2
b) Ta có: \(\left|x-3\right|+\left|x-7\right|=\left|3-x\right|+\left|x-7\right|\ge\left|3-x+x-7\right|=4\)
Dấu "=" xảy ra <=> 3 - x = 0 <=> x = 3
Và x - 7 = 0 <=> x = 7
Vậy BMIN = 4 khi và chỉ khi x = 3; x = 7
Cho x ϵ { -21,-20,-19,-18,-17} ,y ϵ { -3,-4,...,-13,-14 }
a, Có bao nhiêu gía trị x+y khác nhau
b, Tìm giá trị lớn nhất và nhỏ nhất của x+y