Cho tam giác ABC vuông tại B, đường trung trực của BC cắc BC và AC tại M và N trên tia đối của tia MB lấy D sao cho ND=NA. Chúng minh
a) CD vuông góc với BC
b) Tam giác ABC=tam giác DCB
Giúp mình nha...............
Cho tam giác ABC vuông góc tại B. Đường trung trực của BC và AC lần lượt tại M, N. Trên tia đối của tia NB lấy điểm D sao cho ND=NA. CMR
a, CD vuông góc với BC
b, Tam giác ABC= Tam giác DCB
Tam giác ABC vuông tại B. Đường trung trực của BC cắt BC và AC lần lượt tại M và N. Trên tia đối của tia NB lấy D sao cho ND = NA . CMR :
a, CD vuông BC
b, tam giác ABC = tam giác DCB
Cho tam giác ABC vuông tại B. Đường trung trực của BC cắt BC và AC lần lượt tại M và N. Trên tia đối của tia NB lấy điểm D sao cho ND=NA. Chứng minh rằng:
a.CD vuông góc vs BC.
b.Tam giác ABC=tam giác DCB
Các bn giải bài đầy đủ nha tối nay mk đi hc rồi!
Cho tam giác ABC vuông tại B. Đường trung trực của BC cắt BC và AC lần lượt tại M và N. Trên tia đối của tia NB lấy điểm D sao cho ND = NA. Chứng minh rằng:
1) CK ⊥ BC
2) ΔABC = ΔDCB
giải hô với
Cho tam giác ABC vuông tại B. Đường trung trực của BC cắt BC và AC lần lượt tại M và N. Trên tia đối của tia NB lấy điểm D sao cho ND = NA. Chứng minh rằng:
1) CK ⊥ BC
2) ΔABC = ΔDCB
Cho tam giác ABC vuông tại A . Gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a) CM AD = BC
b) CM CD vuông góc với AC
c) Đường thẳng qua B và song song với AC cắt DC tại N . CM tam giác ABM = tam giác CNM
Xét △AMD và △CMB
Có: AM = MC (M là trung điểm)
AMD = CMB (2 góc đối đỉnh)
MD = MB (gt)
=> △AMD = △CMB (c.g.c)
=> AD = BC (2 cạnh tương ứng)
b, Xét △ABM và △CDM
Có: AM = MC (gt)
BMA = CMD (2 góc đối đỉnh)
MB = MD (gt)
=> △ABM = △CDM (c.g.c)
=> BAM = DCM (2 góc tương ứng)
Mà BAM = 90o
=> DCM = 90o
=> AC ⊥ CD
c, Vì BN // AC (gt)
=> BNC = ACD (2 góc đồng vị)
Mà ACD = 90o (câu b)
=> BNC = 90o
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng với cạnh huyền BD => NM = 1/2 . BD = BM
Xét △ABM vuông tại A và △CNM vuông tại C
Có: AM = MC (gt)
BM = MN (cmt)
=> △ABM = △CNM (ch-cgv)
Cho tam giác ABC vuông tại A.Gọi M là trung điểm của AC,trên tia đối của tia MB lấy điểm D sao cho MD=MB
a)Chứng minh AD=BC
b)Chứng minh CD vuông góc với AC
c)Đường thẳng qua B song song với AC cắt tia DC tại N.Chứng minh tam giác ABM= tam giác CNM
a: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MB
Do đó: ΔMAD=ΔMCB
=>AD=BC
b: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>CD\(\perp\)CA
c: Xét tứ giác ABNC có
AB//NC
AC//BN
Do đó: ABNC là hình bình hành
=>AB=CN
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
Cho tam giác ABC vuông tại A, tia phân giác ABC cắt tại AC tại D. Trên BC lấy điểm E sao cho BA= BE. Chứng minh:
a/ Chứng minh: Tam giác ABC = tam giác EDB và DE vuông góc BC
b/ Chứng minh BD là đường trung trục của AE
c/ Trên tia đối của tia AB lấy điểm M sao cho AM=EC. Chứng minh: MD= CD?
d/ Chứng minh: M,D,E thẳng hàng
\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))
Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)
\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)
\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)
\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)
\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)
Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng
Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ các đường phân giác AM và CD của tam giác ABC. Qua D kẻ đường thẳng vuông góc với BC và cắt BC tại E. Trên tia đối của tia AC lấy điểm F sao cho AF= BE. Từ M kẻ đường thẳng vuông góc với BC cắt AC tại N. Chứng minh MN = MB. ( VẼ HÌNH GIÙM MK VS )