Phân ích hành nhân
a) 4(x-y)(x+y) - 5(x+y)2
b) 4(x+y)2 - 6(x-y)(x+y)
Phân ích hành nhân
a) 40x2y - 8xy - 16x2y2
b) (x-y)(x+y)-3(x-y)
c)(x-y)2 -5(x-y)
a, \(40x^2y-8xy-16x^2y^2=8xy\left(5x-1-2xy\right)\)
b, \(\left(x-y\right)\left(x+y\right)-3\left(x-y\right)=\left(x-y\right)\left(x+y-3\right)\)
c, \(\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
a) 40x2y - 8xy - 16x2y2
= 8xy( 5x - 1 - 2xy)
b) (x-y)(x+y)-3(x-y)
= (x - y)( x + y - 3)
c)(x-y)2 -5(x-y)
=(x - y)(x - y - 5)
a) \(40x^2-8xy-16x^2y^2\)
\(=4x\cdot10x-4x\cdot2y-4x\cdot4xy\)
\(=8x\left(5x-y-2xy\right)\)
b) \(\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
c) \(\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
phân tích các đa thức sau đây thành nhân tử
a, 16(4x+5)^2 - 25 (2x+2)^2
b,(x-y+4)^2 - ( 2x+ 3y -1 )^2
c,(x+1)^4 - (x-1)^4
d, x^6 - y^5
làm ơn giải chi tiết giúp mik
a: =(16x+20)^2-(10x+10)^2
=(16x+20-10x-10)(16x+20+10x+10)
=(26x+30)(6x+10)
=4(13x+15)(3x+5)
b: =(x-y+4-2x-3y+1)(x-y+4+2x+3y-1)
=(-x-4y+5)(3x+2y+3)
c: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(x^2+2x+1-x^2+2x-1)(x^2+2x+1+x^2-2x+1)
=2(x^2+1)*4x
=8x(x^2+1)
Bài 1: Phân tích thành nhân tử 3) x ^ 2(x - 1) + 2x * (1 - x) 5) y ^ 2(x ^ 2 + y) - zx ^ 2 - zy 7) 5(x + y) ^ 2 + 15(x + y) 9) 7x(y - 4) ^ 2 - (4 - y) ^ 3; 11)(x+1)(y-2)-(2-y)^ 2 2) 5x(x - 2) - 3x ^ 2(x - 2) 4) 3x(x - 5y) - 2y(5y - x) 6) b(a - c) + 5c - 5a 8) 9x(x - y) - 10(y - x) ^ 2 10) (a - b) ^ 2 - (a + b)(b - a) 12) 2x(x - 3) + y(x - 3) + (3 - x)
Phân tích đa thức thành nhân tử :
1) x^2 +2xy+y^2 -x-y-12
2) 4x^4 -32x^2+1
3) 3(x^4 +x^2 +1) - (x^2 +x+1)^2
4) a^6 + a^4 + a^2b^2 + b^4 - b^6
5) x^3 + 3xy + y^3 -1
6) 4x^4 +4x^3 +5x^2+2x+1
1) \(x^2+2xy+y^2-x-y-12\)
= \(\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(x+y=z\) (đặt ẩn phụ)
\(\Rightarrow z^2-z-12\)
\(=z^2+3z-4z-12\)
\(=z\left(z+3\right)-4\left(z+3\right)\)
\(=\left(z+3\right)\left(z-4\right)\)
Khi đó: \(\left(x+y+3\right)\left(x+y-4\right)\)
#HuyenAnh
Phân tích đa thức thành nhân tử :
a, 3 (x^4+x^2+1)-(x^2+x+1)^2
b, 6x^4+y^4
c, a^6+a^4+a^2b^2+b^4-b^6
d, x^3 +3xy+y^3-1
vại
fdvfdverberrgtrgrgg
Phân tích các đa thức sau thành nhân tử:
a) x2 - 9 - x2 (x2 - 9) d) x2 + 5x + 6 h) a2 + b2 + 2a – 2b – 2ab
b) x2(x-y) + y2(y-x) e) 3x2 – 4x – 4 i) (x + 1)2 – 2(x + 1)(y – 3) + (y – 3)2
c) x3+27+(x+3)(x-9) g) x4 + 64y4 k) x2(x + 1) – 2x(x + 1) + x + 1
Mình đang cần gấp ạ
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
phân tích thành nhân tử
a, x^6-x^4+2x^3+2x^2
b, 4x^4+y^4
a) \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2\left[x^2\left(x^2-1\right)+2\left(x+1\right)\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
b) Ta có: \(4x^4+y^4\)
\(=4x^4+y^4+4x^2y^2-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2-2xy+y^2\right)\left(2x^2+2xy+y^2\right)\)
a, \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)=x^2\left[x^2\left(x^2-1\right)+2\left(x+1\right)\right]\)
\(=x^2\left[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\right]=x^2\left(x^3-x^2+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
b, \(4x^4+y^4=\left(2x^2\right)^2+2.2x^2.y^2+\left(y^2\right)^2-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
1
a, x/20 = y/9 = z/6 và x - 20/y + 4 =13
b,x/3 = y/4 : y/5 = 2/7 và x - y - z = 46
c,x/2 = 2y/5 = 42/7 và 3x . 5y . 7z = 123
d,x/2 = 2y/3 =32/4 và x . y .z -108
2
a, a/4 = b/6 ; b/5 =c/8 và 5k -3b =-536
b, a/7 = b/6 ;b/5= c/8 và a -2b + c = 46
c, 5 . a =8.b = 3.c và a-2b =c = 24
d, a + 3/5 = b -2/3 = c - 1/7 và a+b+c =24
e,a/2 = b/3 = c/4 và a^2 + 3 . b^2 - 2 . c^2 = -16
phân tích đa thức thành nhân tử
a,x^2+6xy+9y^2
b,4a^4-4a^2b^2+b^4
c,x^6+y^2-2x^3y
d,(x+y)^3-(x-y)^3
e,25x^4-10x^2y^2+y^4
f,-a^2-2a-1
g,27b^3-8a^3
h,x^3+9x^y+27xy^2+27y^3
i,16x^2-9(x+y)^2
mk ghi đáp án, ko phân tích đc thì IB mk
a) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
b) \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)
c) \(x^6+y^2-2x^3y=\left(x^3-y\right)^2\)
d) \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(3x^2+y^2\right)\)
e) \(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)
f) \(-a^2-2a-1=-\left(a+1\right)^2\)
g) \(27b^3-8a^3=\left(3b-2a\right)\left(9b^2+6ab+4a^2\right)\)
h) \(x^3+9x^2y+27xy^2+27y^3=\left(x+3y\right)^3\)
i) \(16x^2-9\left(x+y\right)^2=\left(x-3y\right)\left(7x+3y\right)\)