Chứng minh rằng: 16 mũ 502 + 2 mũ 2005 chia hết cho 18
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51
Chứng minh rằng :
a)6 mũ 1000 - 1 chia hết cho 5
b)2002 mũ n . 2005 mũ n + 1 chia hết cho 2;5 và 10
a) 61000 có chữ số tận cùng là 6 nên 61000 - 1 có chữ số tận cùng là 5. Suy ra 61000 - 1 chia hết cho 5.
b) 2002n . 2005n + 1 = 2002n . 2005n . 2005 = (2002 . 2005)n . 2005
2002 . 2005 có chữ số tận cùng là 0 => (2002 . 2005)n có chữ số tận cùng là 0 => (2002 . 2005)n . 2005 có chữ số tận cùng là 0 => 2002n . 2005n + 1 có chữ số tận cùng là 0 => 2002n . 2005n + 1 chia hết cho 2; 5 và 10.
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết
b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 , Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11
b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
Chứng minh rằng
a) 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
b) 19 mũ 2011 + 11 mũ 2010+ 20 mũ 11 chia hết cho 10
c)9 mũ 2n + 2009 chia hết cho 10
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
chứng minh rằng: 8 mũ 7 - 2 mũ 18 chia hết cho 14
Ta có: \(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.2.7\)
\(=2^{17}.14\)
Vì \(14⋮14\) nên \(2^7.14⋮14.\)
=> \(8^7-2^{18}⋮14\left(đpcm\right).\)
Chúc bạn học tốt!
*Ta có : 87 - 218
= (23)7 - 218
= 221 - 218
= 218 . ( 8 - 1)
= 217 . 2 . 7
= 217 . 14 \(⋮\) 14
*Hay : 87 - 218 \(⋮\) 14. (đpcm)
*Tick nhé bạn!
Ta có: 87-218=1835008
- 1835008 chia hết cho 14 <=> 1835008 chia hết cho 7 và 2
mà 1835008: 7=262144
1835008: 2=917504
=> 87-218 chia hết cho 14.
Chứng minh rằng 16 mũ 5 + 2 mũ 15 chia hết cho 17
\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\)
Không chia hết cho 17. em xem lại đề bài nhé.
a)Chứng minh rằng 2002 mũ n nhân 2005 mũ n + 1 chia hết cho 1,5 và 10
b)6 mũ 1000 - 2 chia hết cho 5
Ai nhanh mình like cho,lời giải chi tiết nha mọi người
chứng minh rằng 16 mũ 7 trừ 2 mũ 24 chia hết cho 15
Trả lời:
167 - 224
= ( 24 )7 - 224
= 228 - 224
= 224 ( 24 - 1 )
= 224 . 15 \(⋮\) 15 ( vì 15\(⋮\)15 )
Vậy 167 - 224 chia hết cho 15
CMR: \(16^7\) \(-\) \(2^{24}\) \(⋮\) \(15\)
= \(\left(2^4\right)^7\) \(-\) \(2^{24}\)
= \(2^{4.7}\) \(-\) \(2^{24}\)
= \(2^{28}\) \(-\) \(2^{24}\)
= \(2^{24}\) \(.\) ( \(2^8\) \(+\) \(1\))
= \(2^{24}\) \(.\) \(257\)
=> \(⋮̸\) \(15\)
- Hok T -