Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen phuong thuy
Xem chi tiết
Isolde Moria
25 tháng 11 2016 lúc 17:52

Gọi ƯCLN(2n+1 ; n ) là d

=> ( 2n + 1 ) - 2n \(⋮\) d

=> 1 \(⋮\) d

=> d = 1

Vậy ..........

Yoona Nguyễn
Xem chi tiết
Huyền Nhi
22 tháng 6 2016 lúc 14:26

Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*

=> 2n+1 chia hết cho d, 2n+3 chia hết cho d

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)

Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.

=> Ư(2n+1; 2n+3)=1

Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

  

 

Ngọc Huỳnh Như Tuyết
Xem chi tiết
Luffy mũ rơm
19 tháng 7 2016 lúc 13:28

Gọi UCLN (2n+5;3n+7) là d 

Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d 

=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d 

Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1

Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Hươngg Pé
15 tháng 12 2016 lúc 19:15

Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên

(3x+22):8+10=12

5-|3-x|=3

Vũ Khánh Ngân
Xem chi tiết
Miyuki
Xem chi tiết
Đoàn Văn Doanh
Xem chi tiết
Lại Nguyễn Ngọc Dũng
4 tháng 12 2017 lúc 10:41

Gọi UCLN(2n+1; 2n+3) là d

Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}

          2n+3 chia hết cho d 

Mà 2n+1 là số lẻ =>d Không thuộc {2}

Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau. 

\(\text{Gọi }\left(2n+1,2n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)

\(\Rightarrow d\ne2\Rightarrow d=1\)

\(\text{Vậy }\left(2n+1,2n+3\right)=1\)

Hà Quang Huyên
Xem chi tiết
Nguyễn Thùy Dung
14 tháng 11 2021 lúc 11:52

em ko biết là em đúng hay sai chị thông cảm nhéundefined

Khách vãng lai đã xóa
Akina Minamoto
Xem chi tiết
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.