Chứng tỏ n và 2n +1 là 2 số nguyên tố cùng nhau (n thuộc N)
chứng tỏ n và 2n+1 là 2 số nguyên tố cùng nhau(n thuộc tập hợp N)
Gọi ƯCLN(2n+1 ; n ) là d
=> ( 2n + 1 ) - 2n \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy ..........
Chứng tỏ rằng 2n+1 và 2n+3 (n thuộc N ) là hai số nguyên tố cùng nhau
Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*
=> 2n+1 chia hết cho d, 2n+3 chia hết cho d
=> (2n+3)-(2n+1) chia hết cho d
=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)
Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.
=> Ư(2n+1; 2n+3)=1
Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
1) Chứng tỏ : 2n+5 và 3n+7 ( n thuộc N) là 2 số nguyên tố cùng nhau
Gọi UCLN (2n+5;3n+7) là d
Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d
=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên
(3x+22):8+10=12
5-|3-x|=3
Chứng tỏ :
2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau với n thuộc N
Chứng tỏ rằng:
2n+1 và 2n+3(n thuộc N) là hai số nguyên tố cùng nhau
Gọi UCLN(2n+1; 2n+3) là d
Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}
2n+3 chia hết cho d
Mà 2n+1 là số lẻ =>d Không thuộc {2}
Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau.
\(\text{Gọi }\left(2n+1,2n+3\right)=d\)
\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)
\(\Rightarrow d\ne2\Rightarrow d=1\)
\(\text{Vậy }\left(2n+1,2n+3\right)=1\)
Chứng tỏ 2n 5 và 3n 4 n thuộc N là 2 số nguyên tố cùng nhau
em ko biết là em đúng hay sai chị thông cảm nhé
Chứng tỏ 2n+5 và 3n+4(n thuộc N)là 2 số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.