Tìm tất cả các số tự nhiên m;n sao cho: 2m + 2015 = / n - 2016/ +n - 2016
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Tìm tất cả các số tự nhiên n có 2 chữ số chia hết cho các chữ số đó. Tìm tất cả các số tự nhiên của số đó
Tìm tất cả các số tự nhiên m sao cho m^2+2014 la số chính phương?
Gọi số chình phương đó là: b2
ta có: 2014+ m2=b2
2014= b2-m2
2014=(b+m).(b-m)
nếu n là số lẻ thì m2 là số lẻ nên b2 là số lẻ
nếu n là số chẵn thì m2 là số chẵn nên b2 là số chẵn
vậy (b+m) và (b-m) khi chia cho 2 thì đồng dư (1)
ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )
nên không có số tự nhiên m để m2+2014 là số chính phương.
bài làm
Gọi số chình phương đó là: b2
Ta có: 2014+ m2=b2
2014= b2-m2
2014=(b+m).(b-m)
nếu n là số lẻ thì m2 là số lẻ nên b2 là số lẻ nếu n là số chẵn thì m2 là số chẵn nên b2 là số chẵnvậy (b+m) và (b-m) khi chia cho 2 thì đồng dư (1)
ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )
nên không có số tự nhiên m để m2+2014 là số chính phương.
P/s tham khảo nha
Tìm tất cả các số tự nhiên có hai chữ số là bội của 25
Tìm tất cả các số tự nhiên có hai chữ số là ước của 90
B(250)={25;50;75;}
Ư(90)={10;45;30;18;15;}
lik minh nha
1. Tìm tất cả các số tự nhiên x sao cho \(x⋮15\) và 45 < x <136.
2.Tìm tất cả các số tự nhiên x sao cho \(18⋮x\) và x>7.
1. \(x⋮15\Rightarrow x\in B\left(15\right)=\left\{0;15;30;45;60;75;90;105;120;135;150;...\right\}\)
mà \(45< x< 136\)
\(\Rightarrow x\in\left\{60;75;90;105;120;135\right\}\)
2.
\(18⋮x\Rightarrow x\in U\left(18\right)=\left\{1;2;3;6;18\right\}\)
mà \(x>7\Rightarrow\Rightarrow x\in\left\{18\right\}\)
Bài 2:
\(18⋮x\\ \Rightarrow x\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\\ Mà,x>7\Rightarrow x\in A=\left\{9;18\right\}\)
Cho dãy:m+1;m+2;m+3;....;m+10 (m là số tự nhiên)
Hãy tìm tất cả các số tự nhiên m để dãy số trên chứa nhiều số nguyên tố nhất.
tìm tất cả các số tự nhiên m,n sao cho: 2^m + 2015 = \n-2006\ + n-2016
tìm tất cả các số tự nhiên m,n sao cho: 2^m + 2015 = |n-2006|+ n-2016
Tìm tất cả các số tự nhiên n,m sao cho 2^m +2015 = /n -2016 / + n-2016
TH1: \(n-2016\ge0\)\(\Rightarrow n\ge2016\Rightarrow\left|n-2016\right|=n-2016\)
Khi đó, phương trình đã cho trở thành: \(2^m+2015=2\left(n-2016\right)\)(1)
Vì VT chẵn nên VP chẵn. Mà 2015 lẻ nên \(2^m\)phải lẻ\(\Rightarrow m=0\)
Thay m=0 vào (1), ta được: \(1+2015=2\left(n-2016\right)\Rightarrow n-2016=1008\Rightarrow n=3024\)(TM)
TH2: \(n-2016< 0\Rightarrow n< 2016\Rightarrow\left|n-2016\right|=-\left(n-2016\right)\)
Khi đó, phương trình đã cho trở thành: \(2^m+2015=0\Rightarrow2^m=-2015\)(vô lý)
Vậy \(\left(m;n\right)=\left(0;3024\right)\)
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Tìm Tất Cả các số tự nhiên m,n sao cho : 2^m+2015=ln-2016l+n-2016