1!+2!+...+20!
(1/2+1/3+1/4+......+1/20)+(2/3+2/4+.....+2/20)+.....+19/20
Bạn ơi, bài này là tính tổng hay chứng minh gì thế bạn ?
Bạn ơi hình như bạn ghi đề sai
Cái này chỉ cần bỏ ngoặc ghép cặp lại rồi tính là được mà, mỗi cặp = 1
bài này là làm j đấy??? Chứng minh hay tính tổng???
Bài 7: Chứng tỏ rằng:
1/2^2 + 1/3^2 + 1/4^2 + ...1/100^2 < 3/4
Bài 8: So sánh A= 20^10 + 1 / 20^10 - 1 và B= 20^10 - 1 / 20^10 - 3.
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
Cho và
. Khi đó
...
=>\(\frac{B}{2^2}\)=\(\frac{1}{2^2}\)\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
=> \(\frac{B}{4}=\frac{1}{4}.A\)
=>A=B
=\(\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
=\(\frac{1}{2^2}.A\)=\(\frac{A}{4}\)
=>4
bài này mới đúng nha lúc nãy mk nhầm
a) Tính B= 1+2+2^2+2^3+...+ 2^2008 / 1-2^2009
b) So sánh: A= 20^10+1/20^10-1 và B= 20^10-1 / 20^10-3
a) Đặt A = 1 + 2 + 22 + ... + 22008 (1)
=> 2A = 2 + 22 + 23 + ... + 22009 (2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)
A = 22009 - 1
Khi đó B = \(\frac{2^{2009}-1}{1-2^{2009}}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}\)
=> A - 1 = \(\frac{20^{10}+1-20^{10}+1}{20^{10}}=\frac{2}{20^{10}}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}\)
=> B - 1 = \(\frac{20^{10}-1-20^{10}+3}{20^{10}-3}=\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{2^{10}}< \frac{2}{2^{10}-3}\)
=> A - 1 < B - 1
=> A < B
a) \(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Đặt \(Q=1+2+2^2+...+2^{2008}\)
\(2Q=2+2^2+2^3+...+2^{2009}\)
\(2Q-Q=2+2^2+2^3+...+2^{2009}-1-2-2^2-...-2^{2008}\)
\(\Rightarrow Q=2^{2009}-1\)
Ta thấy \(Q\) là số đối của \(2^{2009}-1\)
\(\Rightarrow B=-1\)
Vậy \(B=-1\).
b) Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Ta lại có: \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\) nên \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\).
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(< =>2B=\frac{2+2^2+2^3+...+2^{2008}+2^{2009}}{1-2^{2009}}\)
\(< =>B=\frac{2^{2009}-1}{1-2^{2009}}=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
Tính tổng ta được kết quả là ....
=>S=1+1+1+...+1 (19 số 1)
=>S=19
Tick nha vì mình đang cần
=(-1/2+3/2)+(-1/3+4/3)+.................+(-1/20+21/20)
= 1 + 1 +.................+1[S có :[(20-2):2+1]*2=20 (số)
=> có :20:2=10 (cặp)=> Có 10 chữ số 1]
=10
(1+2+3+...+1000+1001+1002+...+9999+10000).(32.1.2.3.4.5.6.7.8.9.10.311).(1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1-20+20-20+20-20+20+40-40+40-40+40-20-100+10000).32.33.34.(1-1).1.1.1.1.1.1.1.1.1.1.1.1.(1-2+3-4+5-6+7-8+9-10-100) = ?
Ai làm được tớ tick cho.
Giá trị biểu thức:
\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{20}là\)
a)\(\frac{2^{20}-1}{2^{20}}\)
b)\(\frac{1}{2}-\frac{1}{2^{20}}\)
c)1
d)\(\frac{2^{20}-2}{2^{20}}\)
Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{20}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\right)\)
\(A=1-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}-1}{2^{20}}\)
Vậy chọn câu a)
Giá trị biểu thức :
\(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+....+\left(\dfrac{1}{2}\right)^{20}\) Là :
A \(\dfrac{2^{20}-1}{2^{20}}\) B.\(\dfrac{1}{2}-\dfrac{1}{2^{20}}\)
C . 1 D . \(\dfrac{2^{20}-2}{2^{20}}\)
- Ghi cách giải nữa nha!
\(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{20}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\right)\)
\(A=1-\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)
Chọn A
a)
b)
Tính:
1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{20}\cdot\dfrac{20\cdot21}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+4+...+21}{2}=\dfrac{\left(21+2\right)+\left(3+20\right)+...+\left(10+13\right)+\left(11+12\right)}{2}\)
\(=\dfrac{23+23+...+23}{2}=\dfrac{23\cdot10}{2}=23\cdot5=115\)