cho hình thang cân ABCD có dduongwf cao AH và BK . chứng minh DH=(CD-AB) : 2
Cho hình thang cân ABCD (AB//CD) có AH và BK là 2 đường cao của hình thang
a) Chứng minh rằng: DH = CD - AB/2
b) Biết AB = 6cm; CD = 14 cm; AD = 5cm
Tính DH; AH và diện tích hình thang ABCD
Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.
a) Chứng minh DH = C D − A B 2 .
b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cân ABCD.
a) Chứng minh
DADH = DBCK (ch-gnh)
Þ DH = CK
Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK
b) Vậy D H = C D − A B 2
c) DH = 4cm, AH = 3cm; SABCD = 30cm2
2. Cho hình thang cân ABCD (AB // CD) có
A D = 3
. Tính các góc của hình thang cân.
3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.
a) Chứng minh DH = .
2
CD AB −
b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cân
ABCD.
4. Cho hình thang cân ABCD (AB//CD) có
0 A B = = 60
, AB = 4,5cm; AD = BC = 2 cm. Tính
độ dài đáy CD và diện tích hình thang cân ABCD.
5. Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác.
Chứng minh BCDE là hình thang cân.
6. Cho tam giác ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh
BCHK là hình thang cân.
7. Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tií Mx song song với AC cắt AB
tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC;
b) AM là đường trung trực của EF.
8. Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho
AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:
a) EM song song vói DC;
b) I là trung điểm của AM;
Giúp em với ạ
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Cho hình thang cân ABCD( AB//CD,AB < CD ). Kẻ đường cao AH,BK của hình thang. Chứng minh rằng DH = CK.
Áp dụng định nghĩa, tính chất và giả thiết của hình thang cân ta có:
⇒ Δ ADH = Δ BCK
(trường hợp cạnh huyền – góc nhọn)
⇒ DH = CK (cặp cạnh tương ứng bằng nhau)
Vậy DH = CK. (đpcm)
cho hình thang cân abcd , ab//cd,ab<cd.kẻ các đường cao ah và bk a)chứng minh dh=ck
b)giả sử ab=ad=5cm,cd=13cm.tính diện tích hình thang abcd
a) Xét ΔADH vuông tại H và ΔBCK vuông tại K có
AD=BC(ABCD là hình thang cân)
\(\widehat{D}=\widehat{C}\)(ABCD là hình thang cân)
Do đó: ΔADH=ΔBCK(cạnh huyền-góc nhọn)
Suy ra: DH=CK(hai cạnh tương ứng)
cho hình thang abcd (ab//cd) có ah và bk là 2 đg cao của hình thang
a) cm DH=(cd-ab):2
b) bik AB= 6cm, CD=5cm, tính dh,ah và diện tích hình thang cân abcd
Hình thang cân ABCD có AB //CD, AB < CD. Kẻ các đường cao AH, BK. Chứng minh rằng: DH = CK
Xét hai tam giác vuông AHD và BKC:
∠ (AHD) = ∠ (BKC) = 90 0
AD = BC (tính chất hình thang cân)
∠ C = ∠ D (gt)
Suy ra: ∆ AHD = ∆ BKC (cạnh huyền, góc nhọn)
⇒ HD = KC
Bài 8: Hình thang cân ABCD có AB // CD, AB < CD. Kẻ đường cao AH, BK. Chứng minh DH = CK.
Xét hai tam giác vuông AHD và BKC:
ˆAHD=ˆBKC=90 độ
AD=BC (tính chất hình thang cân)
ˆC=ˆD (gt)
Do đó: ∆ AHD = ∆ BKC (cạnh huyền, góc nhọn)
=> đpcm
Cho hình thang cân ABCD có AB // CD, AB < CD. Kẻ đường cao AH, BK. Chứng minh rằng : DH = CK.
Xét ΔAHD và ΔBKC có:
\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)
AD=BC(gt)
\(\widehat{D}=\widehat{C}\left(gt\right)\)
=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)
=>DH=CK