Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Na Na
Xem chi tiết
Vũ Thu Huyền
Xem chi tiết
o0o I am a studious pers...
1 tháng 12 2016 lúc 20:33

\(A=x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)

\(=x^2+2x+2x-3\)

\(=x^2+4x-3\)

\(=x^2+4x+4-7\)

\(=\left(x+2\right)^2-7\ge-7\)

Dấu ' = ' \(\Leftrightarrow x+2=0\Rightarrow x=-2\)

ngonhuminh
1 tháng 12 2016 lúc 20:32

\(A=x^2+2x+2x-3=x^2+4x-3.\)

\(A=x^2+4x+4-4-3=\left(x+2\right)^2-7\ge-7\)

trần huyền my
13 tháng 12 2018 lúc 19:29

cảm ơn bạn Vũ Thu Huyền đã đăng câu hỏi

Mai Anh Nguyen
Xem chi tiết
Trương Hoàng An
Xem chi tiết
Vũ Việt Anh
11 tháng 12 2016 lúc 19:43

Mình ko biêt nha

chúc các bạn học giỏi

Nhớ k cho mình nha

Juvia Lockser
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 7:22

\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)

\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)

\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)

\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)

\(\Leftrightarrow A\ne0\forall x;y\)

Mai Anh Nguyen
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 8 2021 lúc 15:08

Đặt \(x+3=t\ne0\Rightarrow x=t-3\)

\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)

\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)

Nguyen Thi Yen Anh
Xem chi tiết
Nguyễn Linh Chi
3 tháng 6 2019 lúc 13:46

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

kudo shinichi
Xem chi tiết
Đặng Ngọc Quỳnh
5 tháng 10 2020 lúc 21:10

Biến đổi ta được: \(P=\frac{x^2}{x-1}+\frac{y^2}{y-1}\)

Áp dụng BĐT Cosi cho 2 số dương, ta có:

\(\frac{x^2}{x-1}+\frac{y^2}{y-1}\ge\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\)

Lại có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2\)

Tương tự: \(\frac{y}{\sqrt{y-1}}\ge2\Rightarrow\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\ge8\)

Vậy Min P =8 khi và chỉ khi x=y=2

Khách vãng lai đã xóa
Kiệt Nguyễn
6 tháng 10 2020 lúc 11:59

\(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(kết hợp áp dụng bất đẳng thức Bunyakovsky dạng phân thức)

Đặt a + b = s 

Ta có: \(\left(s-4\right)^2\ge0\Leftrightarrow s^2-8s+16\ge0\Leftrightarrow s^2\ge8\left(s-2\right)\Leftrightarrow\frac{s^2}{s-2}\ge8\)

Vậy GTNN của P là 8 khi x = y = 2

Khách vãng lai đã xóa
Trương Hoàng An
Xem chi tiết