so sánh không dùng máy tính √2+√3 và √10
So sánh (không dùng bảng số hay máy tính bỏ túi): 2 + 3 và 10
2 + 3 và 10
Ta có: 2 + 3 2 = 2 + 2 6 + 3 = 5 + 2 6
10 2 = 10 = 5 + 5
So sánh 26 và 5:
Ta có: 2 6 2 = 2 2 . 6 2 = 4.6 = 24
5 2 = 25
Vì 2 6 2 < 5 2 nên 2 6 < 5
Vậy 5 + 2 6 < 5 + 5 ⇒ 2 + 3 2 < 10 2 ⇒ 2 + 3 < 10
So sánh (không dùng bảng số hay máy tính bỏ túi) 2 31 và 10
Ta có: 31 > 25 ⇒ 31 > 25 ⇒ 31 > 5
Suy ra: 2. 31 > 2.5
Vậy 2. 31 > 10
So sánh(không dùng bảng số hay máy tính bỏ túi): 2 + 3 và 3
2 + 3 và 3
Ta có: 2 + 3 2 = 2 2 . 3 2 =2.3=6
2 2 =4
Vì 6 > 4 nên 2 . 3 2 > 2 2
Suy ra: 2 . 3 > 2 ⇒ 2. 2 . 3 > 2.2 ⇒ 5 + 2. 2 . 3 > 4 + 5
⇒ 5 + 2. 2 . 3 > 9 ⇒ ( √2 + √3)2 > 9
⇒ 2 + 3 2 > 3 2
Vậy 2 + 3 > 3
Không dùng máy tính hãy so sánh:\(2\sqrt{3+\sqrt{5}}\)và \(\sqrt{10}+1\)
\(2\sqrt{3+\sqrt{5}}=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{2}\cdot\left(\sqrt{5}+1\right)\)
\(=\sqrt{10}+\sqrt{2}>\sqrt{10}+1\)
Vậy ....
so sánh (không dùng máy tính hay bảng số :
2 và \(\sqrt{5-3}\)
\(\sqrt{5-3}=\sqrt{2}\)
\(2>\sqrt{2}\)
\(\Leftrightarrow2>\sqrt{5-3}\)
Bài 5:So sánh (không dùng bảng số hay máy tính bỏ túi)
a. 2 và √2+ 1 b. 1 và √3–1 c. 2√31và 10 d. -3.√11và -12
Bài 6 : So sánh
:a/ 15 và √200
b/ 27 và 9 √5
c/ -24 và -6 √15
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
So sánh (không dùng bảng số hay máy tính bỏ túi): 3 + 2 và 2 + 6
3 + 2 và 2 + 6
Ta có: 3 + 2 2 = 3 + 4 3 + 4 = 7 + 4 3
2 + 6 2 = 2 + 2 12 + 6 = 8 + 2 4 . 3 ) = 8 + 2. 4 . 3 = 8 + 4 3
Vì 7 + 4 3 < 8 + 4 3 nên 3 + 2 2 < 2 + 6 2
Vậy 3 + 2 < 2 + 6
So sánh(không dùng bảng số hay máy tính bỏ túi): 11 - 3 và 2
11 - 3 và 2
Vì 11 > 3 nên 11 - 3 > 0
Ta có: 11 - 3 2 = 11 - 2 11 . 3 + 3 = 14 - 2 11 . 3
2 2 = 4 = 14 – 10
So sánh 10 và 2 11 . 3 hay so sánh giữa 5 và 11 . 3
Ta có: 5 2 = 25
11 . 3 2 = 11 2 . 3 2 = 11.3 = 33
Vì 25 < 33 nên 5 2 < 11 . 3 2
Suy ra: 5 < 11 . 3 2
Suy ra: 14 – 10 > 14 - 2 11 . 3 ⇒ 11 - 3 2 < 2 2
Vậy 11 - 3 < 2
Không dùng máy tính hãy so sánh A=10^2016+2018/10^2017+2018 và B=10^2017+2018/10^2018+2018
Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)
Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)
Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)
\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)
hay \(10A>10B\)\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)
Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)
Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)
\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Làm khác bạn kia 1 xíu à