Giá trị lớn nhất của biểu thức: \(\frac{3}{2\left(3x+1\right)^4+3\left|1-y\right|^3+2}\)
Mong sớm nhận đc sự trợ giúp từ m.n! Thanks trước nhé!
Giá trị lớn nhất của biểu thức: \(\frac{3}{2\left(3x+1\right)^4+3\left|1-y\right|^3+2}\)
Mong sớm nhận đc sự trợ giúp từ m.n! Thanks trước nhé!
Giá trị lớn nhất của biểu thức:
\(\frac{3}{2\left(3x+1\right)^4+3\left|1-y\right|^3+2}\)
Ta có: 2(3x+1)4\(\ge\)0 với mọi x
và 3/1-y/3\(\ge\)0 với mọi y
=> 2(3x+1)4+3/1-y/3+2\(\ge\)2*0 + 3*0 + 2=2
Để biểu thức đạt GTLN => 2(3x+1)4+3/1-y/3+2 đạt GTNN
GTNN của biểu thức 2(3x+1)4+3/1-y/3+2 là 2, đạt được khi \(\hept{\begin{cases}2\left(3x+1\right)^4=0\\3|1-y|^3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)
Khi đó, GTLN của biểu thức là: \(\frac{3}{2}\)đạt được khi \(\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)
Vì 2.(3x+1)^4 và 3|1-y|^3 đều >= 0
=> mẫu số của phân số trên >= 2
=> biểu thức trên < = 3/2
Dấu "=" xảy ra <=> 3x+1 = 1-y = 0 <=> x=-1/3 và y=1
Vậy ............
Tk mk nha
1. Tìm giá trị lớn nhất của biểu thức sau: \(H=\frac{1}{\left|8x+16\right|+1}\)
2. Tìm giá trị nhỏ nhất của biểu thức sau:\(K=\frac{1}{-\left|x-3\right|-1}\)
3. Tìm giá trị nhỏ nhất của biểu thức sau:\(L=\frac{1}{-\left|2x-2\right|-1}\)
Giải mau mau giùm mink nhé các bn, thanks nhiều
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
tính giá trị biểu thức
D=\(\left\{\frac{1}{2^2}-1\right\}.\left\{\frac{1}{3^2}-1\right\}.\left\{\frac{1}{4^2}-1\right\}.......\left\{\frac{1}{100^2}-1\right\}\)
MONG MỌI NGƯỜI GIÚP MÌNH SỚM ĐỂ MAI NỘP Ạ!
D = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1.\right)\)
=>\(-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}.\right)\)
=>\(-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)
=>\(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)
=>\(-\left(\frac{1.2.3...99}{2.3.4....100}\right)\left(\frac{3.4.5....101}{2.3.4....100}\right)\)
=>\(-\left(\frac{1}{100}.\frac{101}{2}\right)\)
=>\(D=-\frac{101}{200}\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
A=(\(x\)-4)\(^2\)+1 B=\(\left|3x-2\right|\)-5 C=5-(2\(x\)-1)\(^4\)
D=-3(\(x\)-3)\(^2\)-(y-1)\(^2\)-2021 E=-\(\left|x^2-1\right|\)-(\(x\)-1)\(^2\)-y\(^2\)-2020
giúp mình với bài * khó quá
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
$E=-|x^2-1|-(x-1)^2-y^2-2020$
Ta thấy:
$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$
Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$
$\Leftrightarrow x=1; y=0$
CHo biểu thức :
A = \(\left(\frac{6x-4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Rút gọn biểu thức A
b) Tìm các giá trị nguyên của x đẻ biểu thức A nhận giá trị nguyên
a) Tìm giá trị nhỏ nhất của biểu thức :
\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b) Tìm giá trị lớn nhất của biểu thức :
\(D=\frac{4}{\left(2x-3\right)^2+5}\)
Giúp Mình Với Nhé !!!
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
@Quỳnh : Sao phải sửa ?
a) \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
Ta thấy : \(\left(x+2\right)^2\ge0,\forall x\)
\(\left(y-\frac{1}{5}\right)^2\ge0,\forall y\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}\)
Vậy \(Min_C=-10\Leftrightarrow\left(x;y\right)=\left(-2;\frac{1}{5}\right)\)
b) Để D max
\(\Leftrightarrow\left(2x-3\right)^2+5\)min
Ta có : \(\left(2x-3\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(2x-3\right)^2+5\ge5\)
Dấu " = " xảy ra :
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(Max_D=\frac{4}{5}\Leftrightarrow x=\frac{3}{2}\)
\(A=\left(\frac{6x+4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) rút gọn biểu thức A
b) tìm giá trị nguyên của x để A nhận giá trị nguyên
a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là
\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)
A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)
\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)
b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)
Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\) (vì \(x\in Z;x\ge0\))
Khi đó A=4
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)