Cho 2a+b+c+d =a+b+c+2d =a+b+2c+d =a+b+c+2d
a b c d
Tinh M=a+b + b+c + c+d + d+a
c+d d+a a+b b+c
cho: 2a+b+c+d/a=a+2b+c+d/b=a+b+2c+d/c=a+b+c+2d/d.Tính M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
Ta có\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Khi a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
Khi đó \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{a+d}{-\left(a+d\right)}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)= -4
Nếu a + b + d + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=1+1+1+1=4\)
Vậy khi a + b + c + d = 0 => M = -4
khi a + b + c + d \(\ne\)0 => M = 4
cho 2a+b+c+d / a = a+2b+c+d / b = a+b+2c+d = a+b+c+2d / d
tính M = a+b / c+d + b+c / d+a + c+d / a+b + d+a / b+c
Cho biểu thức sau:$\frac{2a+b+c+d}{a}$2 a + b + c + d a bam vao do nho bam lik e :\
cho a/b=b/c=c/d=d/a va a+b+c khac 0.
Tinh M = 2a-b/c+d + 2b-c/a+d + 2c-d/a+b + 2d-a/b+c
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\left(\text{ vì a+b+c+d khác 0}\right)\)
\(\Rightarrow a=b=c=d\)
\(M=\frac{2a-b}{c+b}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2b-b}{b+b}+\frac{2c-c}{c+c}+\frac{2d-d}{d+d}=\frac{1}{2}.4=2\)
cho a/b=b/c=c/d=d/a trong đó a+b+c+d khác 0 tính giá trị biểu thức M= 2a-b/c+d+ 2b-c/d+a + 2c-d/a+b + 2d -a/b+c
cho dãy số bằng nhau (2a+b+c+d)/a = (a+2b+c+d)/b = (a+b+2c+d)/c = (a+b+c+2d)/d
tính giá trị M = a+b/c+d + b+c/d+a c+d/a+b + d+a/b+c
Cho dãy tỷ số bằng nhau 2a+b+c+d/a=a+2b+c+d/b=a+b+2c+d/c=a+b+c+2d/d
Tính M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
Cho a,b,c,d là các số thực thỏa mãn : \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)+2d
Tính M =\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Ta có : 2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1
=> a + b + c + d / a = a + b + c + d / b = a + b + c + d / c = a + b + c + d / d
Xét 2 trường hợp :
TH1: a + b + c + d = 0
=> a + b = - ( c + d ) ; b + c = - ( a + d ) ; c + d = - ( a + b )
Khi đó M = ( -1 ) . 4 = -4
TH2 : a + b + c + d khác 0
=> a = b = c = d
Khi đó M = 1 . 4 = 4
Vậy M = 4 hoặc M = - 4
co 2a+b+c+d/a = a+2b+c+d/b = a+b+2c+d/c = a+b+c+2d/d
tinh M= a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
2a+b+c+d/a=a+2b+c+d/b=a+b+2c+d/c=a+b+c+2d/d
\(\Leftrightarrow\)a+a+b+c+d/a=a+b+b+c+d/b=a+b+c+c+d/c=a+b+c+d+d/d
\(\Leftrightarrow\)a+b+c+d/a+1=a+b+c+d/b+1=a+b+c+d/c+1=a+b+c+d/d+1
\(\Leftrightarrow\)a+b+c+d/a=a+b+c+d/b=a+b+c+d/c=a+b+c+d/d
Dến đây ta xét 2 TH:
a+b+c+d≠0
a+b+c+d=0
Ta có: (2a+b+c+d/a)-1=(a+2b+c+d/b)-1=(a+b+2c+d/d)-1=(a+b+c+2d/d)-1
=>a+b+c+d/a=a+c+b+d/b=a+b+c+d/c=a+b+c+d/d
=>a=b=c=d (1)
Ta lại có: a+b+c+d/a=a+b+c+d/b=a+b+c+d/c=a+b+c+d/d
=> a+b+c+d/a=a+b+c+d/b=a+b+c+d/c=a+b+c+d/d=(a+b+c+d+a+b+c+d+a+b+c+d+a+b+c+d+)/a+b+c+d
=4(a+b+c+d)/a+b+c+d=4 (2)
Từ (1) và (2) => a=b=c=d=1
=> M=1+1/1+1 + 1+1+/1+1 + 1+1/1+1 + 1+1/1+1
=4
Cho a/b=b/c=c/d=d/a trong đó a+b+c+d khác 0. Tính giá trị biểu thức M = (2a-b)/(c+d)+(2b-c)/((d+c)+(2c-d)/(a+b)+(2d-a0/(b+c)
a/b=b/c=c/d=d/a=(a+b+c+d)/(b+c+d+a)=1
>a=b=c=d>tự tính