Cho tam giác ABH có góc B=60 độ và AB=2BH.
CM: tam giac AHB là tam giác vuông
Cho tam giác ABC có góc B=6o độ và AB=2BH.
CM: tam giavs AHB là tam giác vuông
- 2 tick nha
- Khỏi vẽ hình
cho tam giác abc, h là trực tâm, I là GĐ của các đường trung trực (tâm đường tròn ngoại tiếp). Gọi E là điểm đối xứng với A qua I.
CMR : BHCE là hình bình hành
Cho tam giác ABH có góc B bằng 60 độ và BA=2BH.Chứng minh tam giác AHB vuông
Cho tam giác ABC cân tại A có góc A<90 độ. Kẻ BH vuông góc với AC, CK vuông góc với AB (H thuộc AC, K thuộc AB). Gọi O là giao điểm của BH và CK.
a) Chứng minh: tam giác ABH=tam giác ACK
b) Chứng minh: tam giac OBK=tam giac OCH
c) Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm I sao cho IB=IC. Chứng minh ba điểm A,O,I thẳng hàng
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
KB=HC
\(\widehat{KBO}=\widehat{HCO}\)
Do đó:ΔOBK=ΔOCH
Cho tam giác ABC vuông tại A, AB < AC. Kẻ Ah vuông góc với BC, H thuộc BC, D là một điểm thuộc cạnh AC sao cho AD = AB.
a. Kẻ DE, DK vuông góc với BC, AH tại E, K. CM DK = HE.
b. CM góc ABH = góc DAK.
c. CM tam giác AHB bằng tam giác DKA.
d. CM AH = HE.
Cho tam giác ABC có góc A =90 độ ,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)
a.Tính BC,AH,BI,CI
b.Chứng minh tam giác ABC và tam giác HAC đồng dạng
c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.
d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân
e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN
a)\(ABC\) vuông tại \(A\)\(\Rightarrow\)\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(BC=\)\(\sqrt{AB^2+AC^2}\) \(=\)\(\sqrt{80^2+60^2}\)\(=100^2\)\(\Rightarrow\)\(BC=100cm\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{60^2}+\dfrac{1}{80^2}=\dfrac{1}{48^2}\Rightarrow AH=48\)
\(AI\) là tia phân giác của góc \(BAC\)\(\Rightarrow\)\(\dfrac{BI}{\text{CI }}=\dfrac{AB}{AC}=\dfrac{80}{60}=\dfrac{4}{3}\Rightarrow BI=\dfrac{4}{3}CI\)
Mà \(BI+CI=BC=100\)
\(\Rightarrow\)\(\dfrac{4}{3}CI+CI=100\Leftrightarrow\dfrac{7}{3}CI=\dfrac{300}{7}\)
\(\Rightarrow\)\(BI=BC-CI=100-\)\(\dfrac{300}{7}=\dfrac{400}{7}\)
b) Ta có Góc \(ACH + CAH = 90^o\)
Góc \(CAH + HAM = 90^o\)
\(\Rightarrow\)\(ACH=HAM\)
Xét \(Δ MAH\) và \(ΔNCH,\) có :
\(CHN=AHM(=45^o)\)
\(ACH=HAM\)
\(\Rightarrow\)\(ΔMAH\) đồng dạng vs \(ΔNCH\)
\(\Rightarrow\)\(\dfrac{CN}{AM}=\dfrac{CH}{AH}\)
cho tam giác ABC có góc A = 60 độ AB<AC, đường cao BH ( H thuộc AC)
a) So sánh ABC và ACB Tính góc ABH
b Vẽ ad là phân giác của góc A ( D thuộc Bc, vẽ BI vuông góc với AD tại I. Cm tam giác AIB= tam giác BHA
c Tia BI cắt AC ở E, CM tam giác ABE đều
d. CM DC>DB
a) Trong tam giác ABC có AB<AC
=>góc ACB< góc ABC
Có tam giác ABH vuông tại H
=>HAB+ABH=90 độ )
=>60 độ+ABH=90 độ
ABH=30 độ
b) AD là tia phân giác của góc A
=>EAI= IAB=60độ:2= 30 độ
Xét tam giác vuông BHA và tam giác vuông AIB có
Cạnh huyền AB chung
ABH=IAB=30 độ
=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)
c) Xét tam giác vuông AIE và tam giác vuông AIB có
Cạnh AI chung
EAI=IAB=30 độ
=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)
=>AE=AB ( 2 cạnh tương ứng)
=> Tam giác ABE là tam giác cân và có EAB=60 độ
=> Tam giác ABE là tam giác đều
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có
AB=AE
EAD=DAB=30 độ
Cạnh AD chung
=> tam giác ADB= tam giác ADC (c.g.c)
=> DB=DE (1) và góc ABD=góc AED
do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)
CBx>góc C ( CBx là góc ngoài của tam giác ABC)
=> CED>C, do đó DC>DE (2)
Từ (1) và (2) =>DC>DB
Cho tam giác ABC. Qua B kẻ đường thẳng song song vs AC, qua C kẻ đường thẳng song song vs AB. Chúng cắt nhau ở D
a) CM: AB=CD
b) Kẻ AH vuông góc BC , DK vuông góc BC. CMR: Tam giác ABH =Tam giác DCK và Tam giac BKD = tam giác CHA
Cho tam giác ABC có góc A=90 độ,AB=80cm,AC=60cm,AH là đường cao,AI là phân giác.a)Tính BC,AH,BI.b)CM tam giác ABH đồng dạng tam giác HAC.c)HM, HN là phân giác của tam giác ABH và ACH.CM tam giác MAH đồng dạng NCH.d)CM tam giác ABC và tam giác HMN đồng dạng rồi chúng minh tam giác MAN vuông cân
cho tam giác abc có a bằng 90 độ (ab<ac) kẻ ah uông góc c tại h . lấy d thuộc ac cho ad=ab vẽ de vuông bc tại e kẻ dk vuông ah tại k
a) CM góc ABH=góc KAD => tam giác abh = tam giác dak
b) CM tam giác kdh=tam giác ehd
c) CM Ah=EH
a, Xét △BAH vuông tại H có: HBA + BAH = 90o (tổng 2 góc nhọn trong △vuông)
Ta có: BAC = BAH + HAC => BAH + HAC = 90o
=> HBA = HAC => HBA = KAD
Xét △HBA vuông tại H và △KAD vuông tại K
Có: HBA = KAD (cmt)
AB = AD (gt)
=> △HBA = △KAD (ch-gn)
b, Vì BC ⊥ AH (gt) => HE ⊥ HK
và AH ⊥ KD (gt) => HK ⊥ KD
=> HE // KD (từ vuông góc đến song song)
Xét △HKD vuông tại K và △DEH vuông tại E
Có: HD là cạnh chung
KHD = HDE (HE // KD)
=> △HKD = △DEH (ch-gn)
c, Vì △HKD = △DEH (cmt)
=> KD = EH (2 cạnh tương ứng)
Mà AH = KD (△HBA = △KAD)
=> AH = EH