Hai số nguyên tố cùng nhau là 2 số nguyên tố có ước chung lớn nhất là
: Trong các phát biểu sau, phát biểu nào SAI?
A. Các số chẵn đều là hợp số.
B. Số 2 là số nguyên tố nhỏ nhất.
C. Số nguyên tố là số tự nhiên lớn hơn 1 chỉ có hai ước là 1 và chính nó.
D. Hai số có ước chung lớn nhất bằng 1 gọi là hai số nguyên tố cùng nhau.
Cho biết hai số ước chung lớn nhất bằng 1 được gọi là hai số nguyên tố cùng nhau . Chứng minh với mọi số tự nhiên n thì 2n + 1 và 14n + 5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(2n+1;14n+5)
->(14n+5)-(2n+1)chia hết cho d
->(14n+5)-7(2n+1) chia hết cho d
->14n+5-14n-1 chia hết cho d
->n+5-n-1
4 chia hết cho d
d thuộc {1;-1;2;-2;4;-4}
Sau đó thì bạn dùng phương pháp thử chọn nha.
hai số tự nhiên được gọi là nguyên tố cùng nhau nếu chúng có ước chung lớn nhất là
Hai số tự nhiên nguyên tố cùng nhau sẽ có ước chung lớn nhất là 1
hai số tự nhiên
được gọi là nguyên tố cùng nhau nếu chúng có
ước chung lớn nhất =1
tíc mình nha
Hai số tự nhiên được gọi là số nguyên tố cùng nhau nếu chúng có ước chung lớn nhất là 1.
Bài NTO1 Cho N số nguyên. Yêu cầu kiểm tra các số còn lại với số ban đầu có phải là số nguyên tố cùng nhau không(2 số được gọi là số nguyên tố cùng nhau khi hai số có ước chung lớn nhất là 1). Dữ liệu vào: NTO1.INP gồm Một dòng chứa 1 số N Dòng thứ hai chứa dãy số A[1..N] (các số cách nhau ít nhất một dấu cách) Dữ liệu ra: NTO1.OUT gồm N-1 dòng trả lời tương ứng với các số còn lại so với số ban đầu trả lời là YES nếu là số nguyên tố cùng nhau ngược lại là No
Hai số tự nhiên được gọi là nguyên tố cùng nhau nếu chúng có ước chung lớn nhất là
hai số nguyên tố cùng nhau có ước chung là 1 nhé!
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
1. Đặt với
Nhưng vì nên . Vậy
2. Gọi
Vậy nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó . Nhưng vì cả 2 số đều là số lẻ nên chúng không thể có ƯC là 2. Vậy
1. Đặt với
Nhưng vì nên . Vậy
2. Gọi
Vậy nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó . Nhưng vì cả 2 số đều là số lẻ nên chúng không thể có ƯC là 2. Vậy
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Cho a và b là 2 số nguyên tố cùng nhau.CMR: 11a+2b và 18a+5b là hai số nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d là ƯCLN của 11a +2b và 18a +5b => 11a +2b \(⋮\) d và 18a +5b \(⋮\) d
=> 18.(11a + 2b) \(⋮\) d và 11(18a + 5b) \(⋮\) d
=> 11(18a + 5b) - 18.(11a + 2b) \(⋮\) d => 19b \(⋮\) d => 19 \(⋮\) d hoặc b \(⋮\) d
=> d là ước của 19 hoặc d là ước của b (1)
tương tự ta cũng có 5.(11a + 2b) \(⋮\) d và 2(18a + 5b) \(⋮\)d
=> 5.(11a + 2b) - 2(18a + 5b) \(⋮\)d => 19a \(⋮\)d
=> 19 \(⋮\) d hoặc a \(⋮\) d
=> d là ước của 19 hoặc d là ước của a (2)
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b
=> d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
Hai số nguyên tố cùng nhau là 2 số có ............ ước chung
hai số nguyên tố cùng nhao là 2 số có 1 ước chung