Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Văn Nam
Xem chi tiết
Trần Tiến Minh
Xem chi tiết
Võ Đông Anh Tuấn
5 tháng 2 2016 lúc 21:02

  Cơ bản mà chẳng cần phân tích gì 
7(x-2004)^2=23-(y^2) 
<=> 
7(x-2004)^2+y^2=23 
vế trái yrở thành tổng hai số không âm 
|(x-2004)|<=1 vì 7.2^2=28>23 
=== 
•x=2004=>loại vì y^2=23 không nguyên 
•x=2003 ; 2005=>y^2=23-7=16 
=>y=4 
kl 
x=2003&2005 
y=4

phamdanghoc
5 tháng 2 2016 lúc 21:07

7(x-2004)^2=23-(y^2) 
<=> 
7(x-2004)^2+y^2=23 
vế trái yrở thành tổng hai số không âm 
|(x-2004)|<=1 vì 7.2^2=28>23 
=== 
•x=2004=>loại vì y^2=23 không nguyên 
•x=2003 ; 2005=>y^2=23-7=16 
=>y=4 
kl 
x=2003&2005 
y=4

Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 22:12

\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)

Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)

Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)

Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)

Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)

Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)

Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)

Mai Nguyên
Xem chi tiết
Đinh Thùy Linh
28 tháng 6 2016 lúc 8:54

\(\Leftrightarrow7\left(x-2004\right)^2=23-y^2\)(1)

Vì \(y^2\ge0\forall y\Rightarrow23-y^2\le23\forall y\)

\(\Rightarrow7\left(x-2004\right)^2\le23\)

\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}< 4\)

Mà \(\left(x-2004\right)^2\ge0\forall x\Rightarrow0\le\left(x-2004\right)^2< 4\)

Trong đoạn [0;4) chỉ có 2 số chính phương là 0 và 1 nên:

Nếu x-2004=0 => y2 = 23 - không có y thuộc N thỏa mãn.Nếu (x-2004)2 = 1 thì x = 2005 hoặc x = 2003. Khi đó y2 = 16 mà y thuộc N nên y = 4.

Vậy có 2 nghiệm TM PT là (x=2003;y=4) và (x=2005;y=4).

Jin Air
28 tháng 6 2016 lúc 9:00

7(x-2004)^2 >= 0

-> 23 - y^2 >= 0. Suy ra y^2 <= 23

Ta có: 7(x-2004)^2= 23-y^2 -> 23-y^2 chia hết 7. Tức 23-y^2 là bội của 7. 

Các bội của 7 < 23 là: 0;7;14;21. => y^2={23;16;9;2}

Mà y là số tự nhiên nên y^2={16;9} nên y=4 hoặc 3

Chia 2 trường hợp

-Nếu y=4:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-16

7(x-2004)^2=7 => (x-2004)^2=1 thì x-2004=1 hoặc -1. Suy ra x=2005 hoặc 2003

-Nếu y=3:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-9

7(x-2004)^2=14 => (x-2004)^2=2. Không tồn tại trường hợp này vì ko có số tự nhiên nào có bình phương=2

vậy có 1 trường hợp: y=4 và x={2003;2005}

Chúc bạn học tốt

Đoàn Khánh Linh
2 tháng 11 2017 lúc 5:40

Có 7(x-2004)^2 >0

Mà 7(x-2004)^2=23-y^2

Suy ra 23-y^2>0

Suy ra y^2<23

Y^2=0,1,4,9,16

Y=0,+-1,+-2,+-3,+-4

TH1)y^2=0,y=0

Suy ra 7(x-2004)^2=23-0    Suy ra (x-2004)^2=23/7(loại)

TH2)Y^2=1,y=+-1

Suy ra 7(x-2004)^2=23-1            Suy ra (x-2004)^2=22/7(loại)

TH3)y^2=4,y=+-2

Suy ra 7(x-2004)^2=23-4      Suy ra (x-2004)^2=21/7=3(loại)

TH4)Y^2=9,y=+-3     

Suy ra   7(x-2004)^2=23-9           Suy ra (x-2004)^2=14/2=2(Loại)

TH5)y^2=16,y=+-4

Suy ra 7(x-2004)^2=23-16           Suy ra (x-2004)^2=7/7=1

Suy ra x-2004=1                               Hoặc                x-2004=-1

x=2005                                                                    x=2003

Vậy y=+-4,x={2003,2005}        

hồ nghĩa trường
Xem chi tiết
Lê Song Phương
18 tháng 12 2023 lúc 5:21

Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)

Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)

\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)

Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.

\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)

Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.

Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.

Nguyễn Phương Linh
Xem chi tiết
Quang Huy
23 tháng 1 2017 lúc 13:39

x+xy+x=9

(x*3)+y=9

(x*3)+(y*1)=9

(x+y)*4=9

x+y=9:4

x+y=2.25

x=1.8

y=0.45

Xem chi tiết
I don
29 tháng 3 2019 lúc 6:44

ta có: \(7.\left(x-2004\right)^2\ge0\)

\(\Rightarrow23-y^2\ge0\)

\(\Rightarrow y^2\in\left\{1;4;9;16;0\right\}\)

mà y là STN

=> \(y\in\left\{1;2;3;4;0\right\}\)

thay y = 1 vào bt

7.(x-2004)2 = 23 - 12

....

đến đây bn tự lm nha!
 

suy ra (x-2004)^2=\(\frac{23}{7}\)-\(\frac{y^2}{7}\)<4

suy ra \(\orbr{\begin{cases}\text{(x-2004)^2=0}\\\left(x-2004\right)^2=1\end{cases}}\)

suy ra \(\orbr{\begin{cases}x-2004=0\\x-2004=1\end{cases}}\)suy ra x=2004;x=2005;x=2003

             \(\orbr{\begin{cases}x-2004=-1\\\end{cases}}\)

Với x=0 suy ra 23-y^2=0

suy ra y^2=23(loại)

Với x=1 suy ra 23-y^2=7

suy ra y^2=16 

suy ra y=4(vì y thuộc N)

Vậy cặp số cần tìm là (x,y)=(2005;4);(2003;4)

Trần Trọng Đức
Xem chi tiết
Nguyễn Linh Chi
15 tháng 1 2020 lúc 14:45

d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
Tiểu Cẩm
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 11:42

Bài 1: 

Để E nguyên thì \(x+5⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{3;1;9;-5\right\}\)

Tiểu Cẩm
9 tháng 1 2022 lúc 12:39

Thank you.

Tiểu Cẩm
10 tháng 1 2022 lúc 20:31

giúp mình với ạ cần luôn nhá. mk sẽ tick cho!