Tìm tất cả các số tự nhiên n:(14+6n):n
cho A =6n+42 phần 6n với n thuộc N và n khác 0 tìm tất cả các số tự nhiên n sao cho A là số nguyên
\(A=\frac{6n+42}{6n}=\frac{6n}{6n}+\frac{42}{6n}=1+\frac{7}{n}\)
Để \(A\in Z\)=> \(\Rightarrow7\) chia hết cho \(n\) \(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
Tìm tất cả các số nguyên n để 6n+9/3n là số tự nhiên
\(\frac{6n+9}{3n}=2+\frac{9}{3n}=2+\frac{3}{n}\in N\)
=> \(n\inƯ\left(3\right)=\left\{1;3\right\}\)
Tìm tất cả các số tự nhiên n thoả mãn 6n + 16 chia hết cho n + 2? mình cần gấp
\(6\left(n+2\right)+4⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Tìm tất cả các số tự nhiên m,n sao cho x3m^2++6n-61 +4 à số nguyên tố.
Tìm tất cả các số tự nhiên n thỏa mãn 2^6n − 1 là một số nguyên tố.
Tìm tất cả các số tự nhiên n biết:
6n+5 chia hết cho 3n+2
\(6n+5\)\(⋮\)\(3n+2\)
\(\Leftrightarrow\)\(2\left(3n+2\right)+1\)\(⋮\)\(3n+2\)
Ta thấy \(2\left(3n+2\right)\)\(⋮\)\(3n+2\)
nên \(1\)\(⋮\)\(3n+2\)
\(\Rightarrow\)\(3n+2\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng sau:
\(3n+2\) \(-1\) \(1\)
\(n\) \(-1\) \(-\frac{1}{3}\)
Vì \(n\) là số tự nhiên nên \(n=\Phi\)
suy ra : 6n + 4 +1 chia hết cho 3n +2 ; suy ra 1 chia hết cho 3n+2 ( vì 6n +4 chia hết cho 3n+2 ) ; mà 3n + 2 lớn hơn hoặc bằng 2 nên n thuộc rỗng
6n+5 = 6n+4+1=2(3n+2)+1
vì 2(3n+2) chia hết cho 3n+2
nên 1 chia hết cho 3n+2
3n+2 | 1 | -1 |
---|---|---|
n | -1/3 | -1 |
vì n là số tự nhiên
nên n thuộc \(\varnothing\)
B, ,Tìm tất cả các số tự nhiên n để phân số \(\dfrac{7n+6}{6n+7}\) không phải là phân số tối giản
Tìm tất cả các số tự nhiên n để A=7n+6/6n+7 chưa tối giản.
a) Chứng minh rằng với mọi số tự nhiên n thì phân số 21n+4/14n+3 là phân số tối giản
b) Tìm tất cả các số tự nhiên n để phân số n+3/n-12 là phân số tối giản
c) Tìm các số tự nhiên n để phân số 21n+3/6n+4 rút gọn được
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được