Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BABY LOVELY
Xem chi tiết
Mai Nhật Lệ
25 tháng 4 2016 lúc 21:25

\(A=\frac{6n+42}{6n}=\frac{6n}{6n}+\frac{42}{6n}=1+\frac{7}{n}\)

Để \(A\in Z\)=> \(\Rightarrow7\) chia hết cho \(n\) \(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

vulethaibinh
Xem chi tiết
Hiếu
8 tháng 3 2018 lúc 20:22

\(\frac{6n+9}{3n}=2+\frac{9}{3n}=2+\frac{3}{n}\in N\) 

=> \(n\inƯ\left(3\right)=\left\{1;3\right\}\)

Xem chi tiết
Lấp La Lấp Lánh
3 tháng 11 2021 lúc 20:09

\(6\left(n+2\right)+4⋮\left(n+2\right)\)

\(\Rightarrow\left(n+2\right)\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Hồ Thuật Lê
Xem chi tiết
Nguyễn Ngọc Diệp
Xem chi tiết
Triệu Lệ Dĩnh
Xem chi tiết
Không Tên
27 tháng 1 2018 lúc 21:11

       \(6n+5\)\(⋮\)\(3n+2\)

\(\Leftrightarrow\)\(2\left(3n+2\right)+1\)\(⋮\)\(3n+2\)

Ta thấy      \(2\left(3n+2\right)\)\(⋮\)\(3n+2\)

nên    \(1\)\(⋮\)\(3n+2\)

\(\Rightarrow\)\(3n+2\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta lập bảng sau:

\(3n+2\)     \(-1\)              \(1\)

\(n\)                 \(-1\)         \(-\frac{1}{3}\)

Vì   \(n\) là số tự nhiên nên     \(n=\Phi\)

Trần Thị Yến Nhi
27 tháng 1 2018 lúc 21:15

suy ra : 6n + 4 +1 chia hết cho 3n +2 ; suy ra 1 chia hết cho 3n+2 ( vì 6n +4 chia hết cho 3n+2 ) ; mà 3n + 2  lớn hơn hoặc bằng 2 nên n thuộc rỗng

Bùi Võ Duy Vũ
27 tháng 1 2018 lúc 21:20

6n+5 = 6n+4+1=2(3n+2)+1

vì 2(3n+2) chia hết cho 3n+2

nên 1 chia hết cho 3n+2

3n+21-1
n-1/3-1

vì n là số tự nhiên

nên n thuộc \(\varnothing\)

Bành Thị Kem Trộn
Xem chi tiết
Hiên Viên Kiếm
Xem chi tiết
Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa