Cho \(S=3+3^2+3^3+...+3^{100}\)
Chứng minh rằng \(2S+3\) không là số chính phương
Bài 1: Cho S= 3+3^2+3^3+....+3^100. Chứng minh rằng: (2S+3) không là số chính phương.
cho S = 3 + 3^2 + 3^3 + ... + 3^2021
a, chứng tỏ rằng S chia hết cho 13
b,tìm số tự nhiên 'n' biết 2S + 3 = 3^2n
c, chứng tỏ S không là số chính phương
a) tính ss hạng rồi nhóm 3 số hạng vào 1 nhóm
vì tổng của 1 nhóm chia hết cho 13
=>s chia hết cho 13
b)n=1011
c) cmr s :4 dư 3
từ đó
=>s không là số chính phương vì s:4 dư 3
cho tổng S=1+3+3^2+3^3+........+3^100.Chứng minh rằng S không phải là số chính phương ?
giúp em với . nhớ giải ra nhé
mình tính ra tổng S có tận cùng là 1 và 6 có đúng k ? nếu đúng thì kết luận như thế nào?
S= 3+3^2+3^3+...+3^2021
a) Chứng tỏ rằng S chia hết cho 13
b) Tìm số tự nhiên N biết 2S+3=3^2n
c) Chứng tỏ S không phải số chính phương
Mọi người giúp mik với nhé
có nên giúp ko nhể
Cho F=3^1+3^2+3^3+....+3^100.Chứng minh rằng 2F+3 không là số chính phương.
Cho S=1+3+32+...+330.Chứng minh rằng S không phải là số chính phương
A=1+3+3^2...+3^30 (1)
Nhan 2 ve voi 3 ta duoc :
3A=3+3^2+3^3+...+3^31 (2)
Lay (2)-(1) ta duoc :
2A=1+3^31
2A=1+...7
2A=...8
A=...8:2
A=...4
Vay A khong phai la so chinh phuong
**** nhe
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4
b, Chứng minh rằng 2S +3 là 1 lũy thừa của 3
c, Tìm chữ số tận cùng của S
1) Cho S = 1 + 3 + 32 + 33 + ... + 32014 + 32015.
Chứng minh rằng 2S + 1 là lũy thừa của 1 số tự nhiên.
2) Cho n là số tự nhiên có 2 chữ số. Tìm n biết n + 17 và 2n đều là các số chính phương
3) Chứng minh rằng: M = 1 + 1/2 + 1/3 + ... + 1/22015 > 1008,5
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
CHO F=31+32+33+...3100. CHỨNG MINH RẰNG 2F+3 KHÔNG LÀ SỐ CHÍNH PHƯƠNG