Ta có : \(S=3+3^2+3^3+...+3^{100}\)
=> \(3S=3^2+3^3+3^4+...+3^{101}\)
\(2S=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2S=3^{101}-3\)
\(=>2S+3=3^{101}-3+3=3^{101}\)
\(=\left(3^4\right)^{25}\cdot3\)
\(=\left(...1\right).3\)
\(=\left(...3\right)\)
Vậy \(2S+3\) không là số chính phương (đpcm)