@Đỗ Nguyễn Như Bình \(\frac{2}{3^2}\) hay là \(\frac{2^2}{3}\) hay là \(\left(\frac{2}{3}\right)^2\) vậy em???????????
@Đỗ Nguyễn Như Bình \(\frac{2}{3^2}\) hay là \(\frac{2^2}{3}\) hay là \(\left(\frac{2}{3}\right)^2\) vậy em???????????
5.1/ cho A= 1/2^2+1/3^2+1/4^2+...+1/100^2. Chứng minh rằng A< 3/4.
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
Rút gọn
A= 2^100+2^99+2^98.....+2+1
B=3^100+3^99+3^98....+3+1
C=4^100+4^99+....+4+1
D=2^100- 2^99+....+2^2 - 2 + 1
E=3^100 - 3^99 + 3^98....- 3 +1
Thu gọn
M= 2 + 2^2 + 2^3 ....+ 2^100
Cho A =2+2^2+2^3+....2^100. Tìm số tự nhiên x sao cho A + 1 = 2x
Bài 1: Chứng minh rằng :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
Bài 2: Chứng minh rằng :
Cho S =\(3^0+3^2+3^4+3^6+...+3^{2002}\)
a.Tính S
b.Chứng minh rằng S chia hết cho 7
Chứng minh rằng:
B= 31+32+33+34+.....+3100 chia hết cho 4
Chứng minh rằng
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)= \(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Chứng minh rằng:
a=1+1/2^2+1/3^2+1/4^2+...+1/100^2<2
b=1+1/2+1/3+1/4+...+1/63<6
c=1/2.3/4.5/6....9999/10000<1/100
CHỨNG MINH RẰNG
1/3 ^ 2+1/4^2 + ............+1/100 ^2 nhỏ hơn 1/2