2.Khi chia đa thức x2+mx+2 cho x-1 được dư R1 và chia cho x+1 được đư R2. Biết R1=R2.Tìm m
Đa thức f(x) chia cho x-a được số dư là r1,chia cho x-b thì được số dư là r2.Tìm số dư của phép chia đa thức f(x) cho (x-a)(x-b)
Mọi người giải giúp mình bài này nhá
1. Xác định số k để đa thức x^3+y^3+z^3+kxyz chia hết cho đa thức x+y+z
2. Tìm số tự nhiên n sao cho x^2n+x^n+1 chia hết cho x^2+x+1
3. Khi chia đơn thức x^8 cho x+1/2 ta đuoc thương là P(x) và dư là số R1 . Khi chia P(x) cho 1/2 ta đuoc thương là C(x) và dư là số R2 . Tính R2 ?
Khi chia x^8 cho x+1/2 có thương B(x) dư R1. Chia B(x) cho x +1/2 đc thương là (x) dư R2 . Tính R2
Áp dụng định lý Bê-du về phép chia đa thức , dư khi chia \(x^8\)cho \(x+\frac{1}{2}\)là \(\left(-\frac{1}{2}\right)^8=\frac{1}{2^8}\)
Do đó :\(x^8=\left(x+\frac{1}{2}\right)B\left(x\right)+\frac{1}{2^8}\)
\(\Rightarrow B\left(x\right)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)\)
Tiếp tục áp dụng định lý Bê-du , dư khi chia \(B\left(x\right)\)cho \(x+\frac{1}{2}\)là \(B\left(-\frac{1}{2}\right)\)
Do đó :
\(r_2=B\left(-\frac{1}{2}\right)=\left(\frac{-1}{2}-\frac{1}{2}\right)\left[\left(-\frac{1}{2}\right)^2+\frac{1}{2^2}\right]\left[\left(-\frac{1}{2^4}+\frac{1}{2^4}\right)\right]=-\frac{1}{16}\)
cho số 9876543210 chia cho 86420 được số dư là r1,lấy r1 chia cho 6420 đc số dư là r2,lấy r2 chia cho 420 được số dư là r3 ,lấy r3 chia cho 20 được r4.Tìm r4 nhưng không được thực hiện phép chia.
khi chia x^8 cho x+1\2 duoc thuong B(x) du r1 khi chia b(x)cho x+1\2 duoc C(x) du r2 tim r2
cho số 9876543210 chia cho 86420 được số dư là r1,lấy r1 chia cho 6420 đc số dư là r2,lấy r2 chia cho 420 được số dư là r3 ,lấy r3 chia cho 20 được r4.Tìm r4 nhưng không được thực hiện phép chia.
ta có:9876543210 =864720*A + r1 (1)
r1=B*6420+ r2
r2=C*420+r3
r3=D*20=r4
thế vào lần lược ta đc:
9876543210=86420*A + 6420*B+ 420*C + 20*D +r4
=> 9876543210=20(4321*A+321*B+21*C+D)+r4
nhìn vào ta thấy r4 là phép chia có dư của 9876543210 cho 20 => r4=10
khi chia x^8 cho x+1\2 duoc thuong B(x) du r1 khi chia b(x)cho x+1\2 duoc thuong C(x) du r2 tim r2
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho:
a. Đa thức f(x)=x^3+mx^2+nx+2 chia cho x+1 dư 5, chia cho x+2 dư 8.
b. Đa thức f(x)=x^3+mx+n chia cho x+1 thì dư 7, chia cho x-3 thì dư -5.
c. Đa thức f(x)=mx^3+nx^2+k chia hết cho x+2, chia cho x^2-1 thì dư x+5.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2