M=(2x+3).(2x-3)-2.(x+5)-2.(x-1).(x+2)
Rút gọn M
Tính M khi x=0
Tìm x để M=0
Bài 2. Cho biểu thức: M = (2x + 3)(2x - 3) – 2(x + 5)2 – 2(x - 1)(x + 2)
a) Rút gọn M.
b) Tính giá trị của M tại x =
c) Tìm x để M = 0.
a, Ta có : \(M=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2-x+2x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2x^2+2x-4x+4\)
\(=-22x-55\)
b, - Thay \(x=-2\dfrac{1}{3}=-\dfrac{7}{3}\) vào M ta được :
\(M=-\dfrac{11}{3}\)
c, - Thay M = 0 ta được : -22x - 55 = 0
=> x = -2,5
Vậy ...
a) Ta có: \(M=\left(2x+3\right)\left(2x-3\right)-2\left(x+5\right)^2-2\left(x-1\right)\left(x+2\right)\)
\(=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2+2x-x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2\left(x^2+x-2\right)\)
\(=2x^2-20x-59-2x^2-2x+4\)
\(=-22x-55\)
b) Thay \(x=-2\dfrac{1}{3}\) vào biểu thức \(M=-22x-55\), ta được:
\(M=-22\cdot\left(-2+\dfrac{1}{3}\right)-55\)
\(=-22\cdot\left(\dfrac{-6}{3}+\dfrac{1}{3}\right)-55\)
\(=-22\cdot\dfrac{-5}{3}-55\)
\(=\dfrac{110}{3}-55=\dfrac{110}{3}-\dfrac{165}{3}\)
hay \(M=-\dfrac{55}{3}\)
Vậy: Khi \(x=-2\dfrac{1}{3}\) thì \(M=-\dfrac{55}{3}\)
c) Để M=0 thì -22x-55=0
\(\Leftrightarrow-22x=55\)
hay \(x=-\dfrac{5}{2}\)
Vậy: Khi M=0 thì \(x=-\dfrac{5}{2}\)
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Cho biểu thức: \(M=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)
a) Rút gọn M
b) Tính GTNN,GTLN của M khi x\(\in\) {0; 0,5}
Cíu mik với ...
a: \(M=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
b: x thuộc {0;0,5}
=>x=0 hoặc x=0,5
Khi x=0 thì M=1/0+1=1
Khi x=0,5 thì M=1/0,5+1=1/1,5=2/3
=>M min=2/3 và M max=1
cho m=x^3-2x^2/x-2+x^3+1/x^2-x+1 a, rút gọn m b, tìm x để m=7
a: \(M=\dfrac{x^2\left(x-2\right)}{x-2}+\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x^2+x+1\)
b: Để M=7 thì (x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(loại)
Vậy: x=-3
bài 1: M =(2-x-1/2x-3):(6x+1/2x^2-x-3+x/x+1)
đk(x>=0; x khác 3/2)
a, rút gọn M
b, chứng minh :M<3/2
Cho biểu thức:
M=\(\left(2x+3\right)\left(2x-3\right)-2\left(x+5\right)^2-2\left(x-1\right)\left(x+2\right)\)
a) rút gọn M
b) tính giá trị của M tại \(x=-2\frac{1}{3}\)
c) Tìm x để M =0
a) M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2)
= 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)
= 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4
= -22x - 55 = -11(2x + 5)
b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)
b) M = -11(2x + 5) = 0
\(\Rightarrow\)2x + 5 = 0
\(\Rightarrow\)x = \(\frac{-5}{2}\)
Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)
b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)
\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)
c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)
Vậy \(x=\frac{-5}{2}\)
Bài 1. Tính:
32x^m. 1/2x
(a+5).4
(3a-5b).2a
(a^m+2a^3). a^n
x(2x+1)
-6x+3.(7+2x)
Bài 2. Tìm x: 3x+2(5-x)=0
Bài 3. Rút gọn biểu thức
6(3p+4q)-8(5p-q)+(p-q).
Bài 3. tính giá trị biểu thức sau khi rút gọn:
5x(4x^2-2x+1)- 2x(10x^2-5x-2) với x= -15.
Bài 2:
3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = 0 - 10
<=> x = -10
=> x = -10
Bài 3:
6(3q + 4q) - 8(5p - q) + (p - q)
= 6.3p + 6.4q - 8.5p - (-8).q + p - q
= 18p + 24q - 40p + 8q + p - q
= (18p - 40p + p) + (24q + 8q - q)
= -21p + 31q
Bài 4:
5x(4x2 - 2x + 1) - 2x(10x2 - 5x - 2)
= 5x.4x2 + 5x.(-2x) + 5x.1 - 2x.10x2 + (-2x).(-5x) + (-2x).(-2)
= 20x3 - 10x2 + 5x - 20x3 + 10x2 + 4x
= (20x2 - 20x2) + (-10x2 + 10x2) + (5x + 4x)
= 0 + 0 + 9x
= 9x (1)
Thay x = -15 vào (1), ta có:
9.(-15) = -135
Vậy: Giá trị biểu thức sau khi rút gọn với x = -15 là: -135
M=\(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) tìm ĐKXĐ của x
b) rút gọn M
c) tìm x để M≥-3
a: ĐKXĐ: x<>2; x<>0
b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
c: M>=-3
=>(x+1+6x)/2x>=0
=>(7x+1)/x>=0
=>x>0 hoặc x<=-1/7