Chứng minh rằng 2n+ 3 và n+ 1 nguyên tố cùng nhau ( \(n\in N\))
Help me!
Cho n lẻ và nguyên tố cùng nhau với 3.
Chứng minh rằng: n4-1⋮48.
help me!!
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng minh rằng : ( 2n+1) và (2n+3) là 2 số nguyên tố cùng nhau (n€N)
Đặt ƯCLN(2n+1; 2n+3) = d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\) Ư(2) = {1; 2}
Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.
Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau
Chứng minh rằng : với mọi n thuộc N thì 2n+1 và 2n+2 nguyên tố cùng nhau
Lời giải:
Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$
$\Rightarrow d=1$
Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.
Chứng minh rằng: a = 1 + 2 + 3 + ...... + n và b = 2n + 1 ( n \(\in N;n\ge2\)) là 2 số nguyên tố cùng nhau.
HU hu Giúp mk với !!!!!!!!!!
chứng minh rằng mọi n thuộc N đều thỏa mãn :2n+3 và 2n+5 nguyên tố cùng nhau
Goi UCLN(2n+3;2n+5)=d
Ta có:2n+3 chia hết cho d
2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=>2 chia hết cho d
=>d\(\in\)U(2)={1,2}
Mà 2n+5:2n+3 không chia hết cho 2
=>d=1
Vậy ...............
Gọi d thuộc ƯC(2n+3,2n+5)
=>2n+3 chia hết cho d ; 2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=> 2 chia hết cho d
=>d thuộc Ư(2)={1;2}
Mà 2n+3 ko chia hết cho 2
=> d\(\ne\)2
=>d=1
Vậy 2n+3 và 2n+5 nguyên tố cùng nhau với mọi N(đpcm)
gọi ƯCLN của 2n+3 và 2n+5 là d
=> 2n+3 chia hết cho d ; 2n+5 chia hết cho d
=> 2n+3 - 2n+5 chia hết cho d= 2 chia hết cho d
=> d={1;2} mà 2n+3 chia hết cho 2 thì vô lí nên d=1
=> ƯCLN(2n+3 ; 2n+5)=1=> 2n+3 và 2n+5 là 2 số nguyên tố cùng nhau
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng (2n+1) và (6n+5) nguyên tố cùng nhau và n thuộc N
Gọi d là ƯCLN(2n+1;6n+5)
=>2n+1 chia hết cho d và 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d và 6n+5 chia hết cho d
=>6n+3 chia hết cho d và 6n+5 chia hết cho d
=>(6n+5)-(6n+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2n+1;6n+5) thuộc 1 hoặc 2
Nhưng loại 2 vì 2 số 2n+1 và 6n+5 là số lẻ nên không có ƯCLN là số chẳn => ƯCLN(2n+1;6n+5)=1 nên 2 số này là 2 số nguyên tố cùng nhau.
chứng minh rằng:2n+1 và n.(n+1) là hai số nguyên tố cùng nhau