Chứng minh rằng tồn tại số có dạng : 555...5 chia hết cho 2013
n chữ số 5
chứng minh rằng trong các số có dạng 20142014...2014 , có tồn tại số chia hết cho 2013
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
Chứng minh rằng tồn tại 1 số có dạng 777777777......7777 (chỉ gồm các chữ số 7) mà chia hết cho 2013
Help me!!!!!!!!!!!!!!!!
Xét dãy gồm \(2014\) số hạng :
7; 77; 777 ;........; 777.......777
Lấy \(2014\) số hạng của dãy chia cho \(2013\) ta được \(2014\) số dư nhận các giá trị là :
0; 2; 3; 4; .................. ; 2012 ( 2013 giá trị)
\(\Rightarrow\) Có ít nhất 2 số dư bằng nhau
\(\Rightarrow\) Ở dãy trên có 2 số đồng dư với nhau khi chia cho 2013
\(\Rightarrow\) Hiệu 2 số đó có dạng :
\(77........777000.....000\) \(⋮\) \(2013\)
\(777.......777.10^k\) \(⋮\) \(2013\)
\(\Rightarrow77...777\) \(⋮\) \(2013\) ( do \(10^k\) và \(2013\) nguyên tố cùng nhau )
Vậy tồn tại số có dạng \(77........7777\) chia hết cho \(2013\)
\(\Rightarrowđpcm\)
Chúc bn học tốt!!
@ngonhuminh,@Nguyễn Huy Tú,@Ace Legona, và mọi người giúp em với!!
Chứng minh rằng trong 2013 số tự nhiên n1,n2,....n2013 bất kì luôn tồn tại 1 số chia hết cho 2013 hoặc hữu hạn số khác nhau trong 2013 số có tổng chia hết cho 2013
Chứng minh rằng tồn tại một số gồm toàn chữ số 6 chia hết cho 2013
Chứng minh rằng tồn tại một số tự nhiên gồm toàn chữ số 1 chia hết cho 2013.
+) Chọn dãy số gồm 2014 số
1,11,111,....,111..11
(2014 cs1)
+) Theo nguyên lí Dirichlet tồn tại ít nhất 2 số có cùng số dư khi chia cho2013
Giả sử số đó là 111...11-111...11 (m>n)
(m cs1) (n cs 1)
=>111..1 - 11...1 chia hết cho 2013
=111...100..0 chia hết cho 2013
(m-n cs 1)(n cs0)
=111..1.10n
(m-n cs 1)
Mà 10n ko chia hết cho 2013
=>111..1 chia hết cho 2013 => ĐPCM (điều phải cm)
(m-n cs 1)
cho mình xin k nha
chứng minh rằng tồn tại số có dạng 2023^n-1 chia hết cho 2022 (với n thuộc N*)
Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$
CHỨNG MING RẰNG NẾU 1 SỐ TỰ NHIÊN KHÔNG CHIA HẾT CHO 2 VÀ 5 THÌ TỒN TẠI BỘI CỦA NÓ CÓ DẠNG 111.1(SỐ TỰ NHIÊN GỒM TOÀN CHỮ SỐ 1)
Chứng minh rằng tồn tại số có dạng 20192019...201900...0 chia hết cho 2018