Xét dãy gồm \(2014\) số hạng :
7; 77; 777 ;........; 777.......777
Lấy \(2014\) số hạng của dãy chia cho \(2013\) ta được \(2014\) số dư nhận các giá trị là :
0; 2; 3; 4; .................. ; 2012 ( 2013 giá trị)
\(\Rightarrow\) Có ít nhất 2 số dư bằng nhau
\(\Rightarrow\) Ở dãy trên có 2 số đồng dư với nhau khi chia cho 2013
\(\Rightarrow\) Hiệu 2 số đó có dạng :
\(77........777000.....000\) \(⋮\) \(2013\)
\(777.......777.10^k\) \(⋮\) \(2013\)
\(\Rightarrow77...777\) \(⋮\) \(2013\) ( do \(10^k\) và \(2013\) nguyên tố cùng nhau )
Vậy tồn tại số có dạng \(77........7777\) chia hết cho \(2013\)
\(\Rightarrowđpcm\)
Chúc bn học tốt!!
@ngonhuminh,@Nguyễn Huy Tú,@Ace Legona, và mọi người giúp em với!!