tìm dư khi chia x2016 + x2017 - x2018 cho đa thức x2 - 1
x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200
Tại x=2018
Giúp mik vs nhé mai mik học rồi
Một bạn nhờ mình đăng hộ ( phan thuy anh )
Tìm N(2017) biết đa thức N(x)=x2017−2018.x2016+2018.x2015−2018.x2014+........−2018.x2+2018.x−1
x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200
Tại x=2018
Giúp mik vs nhé
Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
a)x2016=x2017
b)(x-5)2015=(x-5)2014
c5x+5x+2=650
d)x2017=x2
a) x=1 hoặc x=0
b) x=5 hoặc x=6
c) x=64,8
d) x=1 hoặc x=0
a) 2016x = 2017x
=> 2016x - 2017x =0
=> x(2016 - 2017) =0
=> x(-1)=0
=>x=0:(-1)=0
b) (x-5)2015=(x-5)2014
=> (x-5)2015 - (x-5)2014=0
=> (x-5)(2015-2014)=0
=> x-5=0
=>x=5
c)5x + 5x +2 =650
=> 10x + 2 =650
=> 10x =648
=> x = \(\frac{648}{10}=64,8\)
d) 2017x =2x
=> 2017x -2x =0
=> 2015x=0
=>x=0
\(\frac{^{x1}}{x2}\)=\(\frac{x3}{x2}\)=\(\frac{x3}{x4}\)=....................................=\(\frac{x2017}{x2018}\)
va \(\frac{a1}{a2018}\)= \(^{5^{ }2017}\)
biet \(x2+x3+x4+......................+x2018\ne0\)
tinh S=\(\frac{x1+x2+x3+.....................+x2017}{x2+x3+x4+.....................+x2018}\)
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
biết rằng đa thức f(x) khi chia cho x-2 có số dư 6067, khi chia cho x+3 có số dư -4043. Tìm đa thức dư khi f(x) chia cho x2+x-6
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
Đa thức f(x) khi chia cho x−2 thì dư 5, khi chia cho x−3 thì dư 7, khi chia cho (x−2)(x−3) thì được thương là x2 − 1 và còn dư. Tìm đa thức f(x).
Nhanh lên mọi người mik cần gấp !!!!
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)