Tìm min \(K=x^2-2xy+2y^2-4y+2016\)
Tìm min: K= x^2 - 2xy +2y^2 - 4y +2016
\(K=x^2-2xy+2y^2-4y+2016=\)\(x^2-2xy+y^2+y^2-4y+4+2012=\)\(\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\)\(\left(x-y\right)^2+\left(y-2\right)^2+2012\)
Vì \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow K_{min}=2012\) Khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\y=2\end{cases}\Rightarrow}x=y=2}\)
\(x^2-2xy+2y^2-4y+2016\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-4y+4+2012\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+2014\)
Xét đa thức \(\left(x-y\right)^2+\left(y-2\right)^2\)
Dễ thấy \(\left(x-y\right)^2+\left(y-2\right)^2\) luôn luôn dương với mọi giá trị của \(x,y\)
Vậy giá trị nhỏ nhất của k=2014
Tìm min : a) \(M=x^2-2xy+2y^2-4y+2016\)
b) \(N=x^2-2xy+2x+2y^2-4y+2016\)
a)\(M=x^2-2xy+2y^2-4y+2016\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)
Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)
Vậy MinM=2012 khi x=y=2
b)\(N=x^2-2xy+2x+2y^2-4y+2016\)
\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)
Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)
Vậy MinN=2014 khi x=0;y=1
Tìm Min:
\(A=x^2+2y^2-2xy-4y+5\)
\(B=5x^2+8xy+5y^2-2x+2y\)
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
Tìm Min \(K=5x^2+2y^2+4z^2-16x-4y-2xy+4yz+30\)
K = 5x2 + 2y2 + 4z2 - 16x - 4y - 4xz + 4yz + 30 ( sửa -2xy thành -4xz nhá :)) )
= [ ( x2 - 2xy + y2 ) - 4xz + 4yz + 4z2 ] + ( 4x2 - 16x + 16 ) + ( y2 - 4y + 4 ) + 10
= [ ( x - y )2 - 2( x - y )2z + ( 2z )2 ] + ( 2x - 4 )2 + ( y - 2 )2 + 10
= ( x - y - 2z )2 + ( 2x - 4 )2 + ( y - 2 )2 + 10
\(\hept{\begin{cases}\left(x-y-2z\right)^2\ge0\forall x,y,z\\\left(2x-4\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y-2z\right)^2+\left(2x-4\right)^2+\left(y-2\right)^2+10\ge10\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-2z=0\\2x-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=2\\z=0\end{cases}}\)
=> MinK = 10 <=> x = y = 2 ; z = 0
Sai thì bỏ qua nhé ;-;
à quên thêm -4xz :)) sr sr :v
Đề đúng là K = 5x2 + 2y2 + 4z2 - 16x - 4y - 2xy - 4xz + 4yz + 30
Thế nhé :)) sai chỗ nào thì bỏ qua dùm mình -..-
Tìm min của A = x mũ 2 + 2y mũ 2 + 2xy +2x - 4y + 2020
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}y=3\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=-4\end{cases}}}\)
Vậy \(Min_A=2010\Leftrightarrow\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
Chúc bạn học tốt !!!
Tham khảo :
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu ''=''= xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
cho mình hỏi cái :
10 mũ x+4y=2013
mình đang cần gấp 3 tiếng nưa là mình phải đi học rồi
tìm min B=x2 -2xy +2y2 -4y +5
(x-y)2 +(y -2)2 +5 -1-4
GTNN B = 0
( bài toán trg sách bồi dưỡng hsg8)
Tìm giá trị nhỏ nhất của x^2 + 2y^2 +2xy+2x-4y+2016
tìm max y-2y^2+x^2-5x và
7xy-3x^2-4y^2+2x-3y+5
tìm min
3y^2-2xy+6x^2 -x +2y-1
tìm GTNN của biểu thức
A=x^2+2y^2+2xy+2x-4y+2016
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)