Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vy tường
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 6 2016 lúc 12:35

Ta sẽ chứng minh bất đẳng thức sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)

\(\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2< \frac{a+b}{2}\Leftrightarrow\frac{a+b+2\sqrt{ab}}{4}< \frac{a+b}{2}\Leftrightarrow a+b+2\sqrt{ab}< 2\left(a+b\right)\Leftrightarrow-\left(a-2\sqrt{ab}+b\right)< 0\Leftrightarrow-\left(\sqrt{a}-\sqrt{b}\right)^2< 0\)(luôn đúng)

Vậy bất đẳng thức được chứng minh.

Áp dụng : \(\frac{\sqrt{1998}+\sqrt{2000}}{2}< \sqrt{\frac{1998+2000}{2}}=\sqrt{1999}\)

\(\Rightarrow\sqrt{1998}+\sqrt{2000}< 2.\sqrt{1999}\)

Hoàng Lê Bảo Ngọc
12 tháng 6 2016 lúc 12:37

Phần chứng minh bất đẳng thức bạn ghi thêm điều kiện a,b > 0 nhé

pham van thanh
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
Lê Hồ Trọng Tín
21 tháng 5 2019 lúc 20:58

ĐK:1\(\ge\)x\(\ge\)-1

+) Với x1=x2=...=x2000 

Từ (1) suy ra x1=x2=...=x2000 =1/2000 (thay vào (2) thỏa mãn)

+) Với x1<x2<...<x2000 ( trường hợp còn lại chắc cũng giống vậy)

Từ (1) suy ra:

VT>2000.\(\sqrt{1+x_1}\)<=> \(\sqrt{\frac{2001}{2000}}\)>\(\sqrt{1+x_1}\)<=>x1<1/2000(1)

Từ (2) suy ra:

VT<2000.\(\sqrt{1+x_1}\)<=>\(\sqrt{\frac{1999}{2000}}\)<\(\sqrt{1-x_1}\) <=>x1>1/2000(2)

Từ (1) và (2) cho thấy x1<x2<...<x2000 không xảy ra 

Vậy: Hệ phương trình có nghiệm duy nhất x1=x2=...=x2000 =1/2000

Đào Thu Hoà
21 tháng 5 2019 lúc 22:28

Cảm ơn nhiều nha Lê Hồ Trọng Tín , cách giải rất hay . Mk có cách này, cũng gần tương tự(p/s nhà mk đã đủ gạch đá r nên k dám nhận nữa đâu ( v ̄▽ ̄)   )

Điều kiện \(-1\le x_n\le1\) với mọi \(n=1,2,3,...,2000\)

Khi đó :

\( \left(1\right)\Leftrightarrow2000.2001=\left(\sqrt{1+x_1}+\sqrt{1+x_2}+...+\sqrt{1+x_{2000}}\right)^2\)

                     \(\le\left(1+1+...+1\right)\left(1+x_1+1+x_2+...+1+x_{2000}\right)\)( bất đẳng thức bunyakovsky)

                     \(=2000\left(2000+x_1+x_2+...+x_{2000}\right)\)

           \(\Leftrightarrow1\le x_1+x_2+...+x_{2000}\)

Khi đó :

\(\left(2\right)\Leftrightarrow2000.1999\le\left(1+1+...+1\right)\left(1+1+...+1-x_1-x_2-...-x_{2000}\right)\)

        \(\Leftrightarrow x_1+x_2+...+x_{2000}\le1\)

Do đó \(\hept{\begin{cases}1+x_1=1+x_2=...=1+x_{2000}\\1-x_1=1-x_2=...=1-x_{2000}\\x_1+x_2+...+x_{2000}=1\end{cases}\Leftrightarrow_{ }}x_1=x_2=...=x_{2000}=\frac{1}{2000}.\)

dan mbdgk
Xem chi tiết
Lê Huỳnh Minh Ánh
13 tháng 7 2016 lúc 10:44

s hk có đề

phan tuấn anh
Xem chi tiết
VRCT_gnk_Thùy Linh
24 tháng 7 2016 lúc 17:04

xin lỗi bạn,mình mới lớp 6 nên ko làm đc.

Vĩnh Thụy
21 tháng 8 2016 lúc 14:26

Anh à, bài toán này em nghĩ anh nên đăng trên h thì sẽ được giải đáp tốt hơn đó. Xin lỗi, em mới học lớp 7.

Dương Mai Vy
21 tháng 8 2016 lúc 14:29

mới lớp 6 ko biết

phantuananh
Xem chi tiết
Puzzy_Cô nàng bí ẩn
12 tháng 7 2016 lúc 17:07

Hic... thông cảm đi, đây chưa học bn ạ, chứ giúp đc mk giúp òi khocroi

le xuan duc
12 tháng 7 2016 lúc 20:31

hay

 

Uzumaki Naruto
Xem chi tiết
ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
EDOGAWA CONAN
26 tháng 7 2018 lúc 20:40

Ta có :

\(A=\dfrac{\left(\sqrt{2000}-\sqrt{1999}\right)\left(\sqrt{2000}+\sqrt{1999}\right)}{\left(\sqrt{2000}+\sqrt{1999}\right)}=\dfrac{1}{\sqrt{2000}+\sqrt{1999}}\)

\(B=\dfrac{\left(\sqrt{2001}-\sqrt{2000}\right)\left(\sqrt{2001}+\sqrt{2000}\right)}{\left(\sqrt{2001}+\sqrt{2000}\right)}=\dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)

Do \(\sqrt{2000}+\sqrt{1999}< \sqrt{2001}+\sqrt{2000}\)

\(\Rightarrow A>B.\)

Trịnh Công Mạnh Đồng
26 tháng 7 2018 lúc 20:43

Bài làm:

Theo máy tính Vinacal 570ES PLUS II, ta có:

A>B

Đọc tiếp...