cho x>2y và xy=1 . Tìm gtnn : \(P=\frac{x^2+4y^2}{x-2y}\)
1. Cho x,y thỏa mãn 0 < x <= 2, 4 <= y < 5 và x + y = 6
Tìm GTNN: P = 1/x + 1/y
2. Cho x > 2y, xy = 1
Tìm GTNN: P = (x^2 + 4y^2)/(x-2y)
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
Cho x>2y và xy=1, tìm MIN
\(y=\frac{x^2+4y^2}{x-2y}\)
Cảm ơn mọi người đã giúp đỡ.
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
Bài 1: Cho x+2y=1. Tìm GTNN của A=x2+2y2
Bài 2: Cho xy=1. Tìm GTNN của B=|x+y|
Bài 3: Tìm GTNN của
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
Tìm GTNN \(M=\frac{xy^2+y^2\left(y^2-x\right)+1}{x^2y^4+2y^4+x^2+2}\)
M nhỏ nhất khi mẫu bé nhất.mà
x2y4 ,2y4,x2>=0
x=y=0
m=1/2,tại x=y=0
cho x;y>0 ; x+2y=1 tìm GTNN của P= \(\frac{1}{2xy}\)+\(\frac{1}{x^2+4y^2}\)
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+2ab+b^2 >= 4ab
<=> (a+b)^2 >= 4ab (1) <=> 2ab <= (a+b)^2/2 (2)
Với a,b > 0 thì chia 2 vế của (1) cho (a+b).ab , ta được :
a+b/ab >= 4/a+b
<=> 1/a + 1/b >= 4/a+b (*)
Áp dụng bđt (*) và bđt (2) thì :
P = 1/2xy + 1/x^2+4y^2 = 1/4xy + (1/4xy + 1/x^2+4y^2) >= 1/2.x.2y + 4/x^2+4xy+y^2
>= 1 : (x+2y)^2/2 + 4/(x+2y)^2 = 1 : 1/2 +4/1 = 6
Dấu "='' xảy ra <=> x=2y và x+2y=1
<=> x=0,5 ; y=0,25
Vậy GTNN của P = 6 <=> x=0,5 và y=0,25
k mk nha
mk mới làm cách khác bạn
P=\(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)+\(\frac{1}{4xy}\)
áp dụng BĐT phụ 1/a +1/b >= 4/a+b
=> \(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)>= \(\frac{4}{\left(x+2y\right)^2}\)=4 (1)
áp dụng BĐT phụ 1/ab >= 4/(a+b)^2
+) 1/4xy = 1/2.1/2xy
1/2xy>= 4/(x+2y)^2 = 4
=> 1/4xy >= 1/2 . 4 = 2 (2)
cộng (1) và (2) => P>=6
tìm các cặp (x,y) dương thỏa mãn
\(2x^2+2y^2-x^2y^2-6xy-4x+4y+10=0\)
sao cho xy đạt GTNN
bạn nhóm thành các bình phương nhé. còn dư 4xy với 1.
\(\frac{x^2+4y^2}{x^2-2y^2+xy}-\frac{4xy}{x^2-2y^2-xy}\)
lên qanda mà giải í (điện thoại di động)
các bạn khôn ghê
tính giá trị của các biểu thức sau:
a,\(\frac{9x^5-xy^4-18x^4y+2y^5}{3x^3y^2+xy^4-6x^2y^3-2y^5}\)biết x,y≠0,x≠2y và \(\frac{x}{y}=\frac{2}{3}\)
b,\(\frac{x^2+4y^2-4x\left(y+1\right)+8y-21}{\left(7+2y-x\right)^2-\left(7+2y-x\right)\left(2x+1-4y\right)}\)biết y≠\(\frac{1}{7},\)2y≠-7, 2y-x≠-2 và \(\frac{7x}{7y-1}=2\)