Những câu hỏi liên quan
Chu Minh Nam
Xem chi tiết
Đức Lộc
12 tháng 4 2019 lúc 20:04

Ta có \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)       (1)

\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)

\(\Leftrightarrow ab+a+b+1\ge9ab\) (vì ab > 0)

\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) (vì a + b = 1)

\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)   (vì a + b = 1)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)  (2)

Bất đẳng thức (2) đúng, mà các phép biến đổi trên tương đương, vậy bất đẳng thức (1) được chưng minh.

Bình luận (0)
Nguyễn Trung Thành
7 tháng 2 2020 lúc 16:57

1+1/a= 1+ (a+b)/a = 2+b/a

tương tự: 1+1/b= 2+a/b

nhân 2 đa thức với nhau đc : 5+2a/b+2b/a=5+2(a/b+b/a)

áp dụng bđt cô si a/b+b/a >=2     =) 5+2(a/b+b/a)>=9 (dấu = xảy ra khi a-b=1/2)

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
29 tháng 7 2020 lúc 8:35

\(LSH=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)=5+2\left(\frac{a}{b}+\frac{b}{a}\right)\ge5+2.2=RHS\)

Bình luận (0)
 Khách vãng lai đã xóa
Cao Minh Tuấn
Xem chi tiết
Phạm Thành Đông
27 tháng 2 2021 lúc 23:08

Đặt A = \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

A = \(\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)(Vì a + b = 1)

A = \(\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)

A = \(4+\frac{2a}{b}+\frac{2b}{a}+1\)

A = \(5+2\left(\frac{a}{b}+\frac{b}{a}\right)\)

Vì a, b dương nên áp dụng BĐT Cô - si cho 2 số dương, ta được :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2.1=2\)

\(\Leftrightarrow2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4\)

\(\Leftrightarrow5+2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4+5\)

\(\Leftrightarrow A\ge9\)

Dấu bằng xảy ra \(\Leftrightarrow\)a = b > 0

Vậy \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)với a, b là các số dương và a + b = 1

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Thành Đông
27 tháng 2 2021 lúc 23:14

Tớ quên. Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b>0\\a+b=1\end{cases}}\)

\(\Leftrightarrow a=b=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
28 tháng 2 2021 lúc 7:39

Một cách khác :))

Ta có : \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=1+\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}\)

Theo bđt Cauchy-Schwarz dạng Engel ta có : \(\frac{1}{b}+\frac{1}{a}\ge\frac{4}{a+b}=4\)(1)

Theo bđt AM-GM ta có : \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(2)

Từ (1) và (2) => \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=1+\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}\ge1+4+4=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = b = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
Trương Thanh Nhân
Xem chi tiết
kudo shinichi
28 tháng 3 2020 lúc 16:12

Ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)

Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(

Bình luận (0)
 Khách vãng lai đã xóa
Trần Phúc Khang
29 tháng 3 2020 lúc 20:08

BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)

<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)

<=> \(ab+bc+ac+a+b+c\ge6\)(1)

(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)

=> BĐT được CM

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Trương Thanh Nhân
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
28 tháng 3 2020 lúc 15:48

Biến đổi tương đương ta có : 

\(\frac{a}{\left(a+1\right).\left(b+1\right)}+\frac{b}{\left(b+1\right).\left(c+1\right)}+\frac{c}{\left(c+1\right).\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4.a.\left(c+1\right)+4.b.\left(a+1\right)+4.c.\left(b+1\right)\ge3.\left(a+1\right).\left(b+1\right).\left(c+1\right)\)

\(\Leftrightarrow4.\left(a+b+c\right)+4.\left(ab+bc+ac\right)\ge3.a.b.c+3.\left(a+b+c\right)+3.\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm bất đẳng thức Cauchy 3 số ta có : 

a+b+c \(\ge\)3.\(\sqrt[3]{abc}\)và ab + bc + ca \(\ge3.\sqrt[3]{a^2b^2c^2}=3\)

Vậy bất đẳng thức đã được chứng minh . Dấu bằng xảy ra khi và chỉ khi a= b= c =1

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
31 tháng 3 2020 lúc 19:34

Mình áp dụng BĐT AM-GM  đến dòng 

\(\Leftrightarrow ab+bc+ca+a+b\ge6\left(1\right)\)

Áp dụng BĐT AM-GM cho 3 số dương ta được

\(ab+bc+ca\ge3\sqrt[2]{\left(abc\right)^2}=3;a+b+c\ge3\sqrt[2]{abc}=3\)

Cộng từng vế  BĐT ta được (1). Do vậy BĐT ban đầu được chứng minh

Dấu "=" xảy ra <=> a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Trương Thanh Nhân
Xem chi tiết
Tran Le Khanh Linh
29 tháng 3 2020 lúc 9:29

Biến đối tương đương ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4a\left(c+1\right)+4b\left(a+1\right)+4c\left(b+1\right)\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\left(a+b+c\right)+4\left(ab+bc+ca\right)\ge3abc+3\left(a+b+c\right)+3\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm BĐT Cauchy 3 số ta có:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{cases}}\)

Vậy BĐT đã được chứng minh. Dấu "=" <=> a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Trần Đức Thắng
Xem chi tiết
Tài Nguyễn Tuấn
14 tháng 11 2015 lúc 22:18

Gợi ý : Dùng BĐT Cô-si nhé!

Li-ke dùm 1 cái

Bình luận (0)
Tuấn
15 tháng 11 2015 lúc 13:05

\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+2}\le\frac{1}{2\left(ab+a+1\right)}\)
Tương tự cho mấy cái kia (bạn hoán vị vòng nha )...
khi đó \(VT\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\)(*)

Do:\(\frac{1}{ab+a+1}=\frac{c}{1+ac+c}\)(1)
      \(\frac{1}{bc+b+1}=\frac{ca}{c+1+ac}\)(2)
\(\frac{1}{ac+c+1}\)(3)
Cộng từng cé (1)(2)(3)=> VT=1
kết hớp (*)=>dpcm
Dấu = xảy ra khi a=b=c =1

Bình luận (0)
Họ Và Tên
Xem chi tiết
titanic
13 tháng 9 2018 lúc 0:11

Ta có \(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\ge\left(a+b+1\right).2ab+\frac{4}{a+b}\)

\(=2.\left(a+b\right)+2+\frac{4}{a+b}\)

\(=a+b+2+a+b+\frac{4}{a+b}\)

\(\ge2.\sqrt{a.b}+2+2.\sqrt{\left(a+b\right).\frac{4}{a+b}}=2+2+2\sqrt{4}\)

\(=2+2+4=8\)

Vậy\(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)với ab=1

Bình luận (0)
Lê Minh Đức
Xem chi tiết
Phan Nghĩa
10 tháng 5 2021 lúc 15:37

Áp dụng bất đẳng thức AM-GM cho 3 số :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3\left(b+1\right)\left(c+1\right)}{\left(b+1\right)\left(c+1\right)8^2}}=\frac{3a}{4}\)

Tương tự ta có \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3c}{4}\)

Cộng theo vế các bđt trên ta được : 

\(VT+2\left(\frac{a}{8}+\frac{b}{8}+\frac{c}{8}+\frac{3}{8}\right)\ge\frac{3}{4}\left(a+b+c\right)\)

\(< =>VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{6}{8}\)

\(=\frac{1}{2}\left(a+b+c\right)-\frac{6}{8}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{6}{8}=\frac{12-6}{8}=\frac{6}{8}=\frac{3}{4}\)

Dấu "=" xảy ra \(< =>a=b=c=1\)

Done !

Bình luận (0)
 Khách vãng lai đã xóa
CơnGióLạnh
Xem chi tiết
Khánh Ngọc
30 tháng 7 2020 lúc 7:02

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Khánh Ngọc
30 tháng 7 2020 lúc 7:58

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
30 tháng 7 2020 lúc 20:06

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2-ab+1\right)\le\left(a^2+b^2-ab+1\right)\)

vì a2+b2-ab+1 >0 với mọi a,b thuộc R \(\Rightarrow\frac{1}{3}\left(a+b\right)\le1\Leftrightarrow a+b\le3\)

khi đó ta có \(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=a+\frac{4}{a}+b+\frac{1}{b}+\frac{4}{a}+\frac{1}{b}\)

\(\Leftrightarrow M=\left(a+\frac{4}{a}\right)+\left(b+\frac{1}{b}\right)+\left(\frac{4}{a}+\frac{1}{b}\right)\)

áp dụng bđt cosi cho các cặp số dương \(\left(a;\frac{4}{a}\right);\left(b;\frac{1}{b}\right);\left(\frac{4}{a};\frac{1}{b}\right)\)ta có

\(\hept{\begin{cases}a+\frac{4}{a}\ge2\cdot\sqrt{a\cdot\frac{4}{a}}=2\sqrt{4}=4\\b+\frac{1}{b}\ge2\sqrt{b\cdot\frac{1}{b}}=2\sqrt{1}=2\\\frac{4}{a}+\frac{1}{b}\ge\frac{\left(2+1\right)^2}{a+b}\ge\frac{9}{3}=3\end{cases}}\Rightarrow minM=4+3+2=9\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{4}{a}\\b=\frac{1}{b}\\a=2b\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}}\)

vậy M đạt giá trị nhỏ nhất là 9 khi a=2; b=1

Bình luận (0)
 Khách vãng lai đã xóa