Cho tam giác ABC vẽ BE và CF thẳng góc với AC và AB tại E,F. Cho AB+CF=AC+BE, c/m tam giác ABC cân
cho tam giác ABC , vẽ BE vuông góc AC tại E , vẽ CF vuông góc với AB tại F . Cho BE + AC = BA + CF . CMR tam giác ABC cân tại A
Trên tia đối của BE lấy điểm M sao cho BM=AC
Trên tia đố của CF lấy điểm N sao cho CN=AB.
Ta có: ^ABE+^BAE=^ABE+^BAC=900 (vì tam giác AEB vuông tại E)
Tương tự: ^ACF+^CAF=^ACF+^BAC=900
=> ^ABE=^ACF => 1800 - ^ABE = 1800 - ^ACF => ^MBA=^ACN
Xét \(\Delta\)BMA và \(\Delta\)CAN:
BM=AC
^MBA=^ACN => \(\Delta\)BMA=\(\Delta\)CAN (c.g.c)
AB=CN
=> MA=AN (2 cạnh tương ứng)
Lại có: BE+AC=BA+CF (giả thiết). Thay AB=CN, AC=BM, ta được:
BE+BM=CN+CF => EM=FN
Xét \(\Delta\)AEM và \(\Delta\)AFN:
AM=AN (cmt)
^AEM=^AFN=900 => \(\Delta\)AEM=\(\Delta\)AFN (Cạnh huyền cạnh góc vuông)
EM=FN
=> ^AME=^ANF (2 góc tương ứng) hay ^AMB=^ANC (1)
Mà \(\Delta\)BMA=\(\Delta\)CAN (cmt) => ^AMB=^NAC (2)
Từ (1) và (2) => ^ANC=^NAC => \(\Delta\)ACN cân tại C => AC=CN.
Mà CN=AB => AB=AC => \(\Delta\)ABC cân tại A (đpcm).
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng ( giúp mk vs mai mk nộp r)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
FB=EC
FC=EB
BC chung
DO đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔBIC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,M,I thẳng hàng
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
cho tam giác ABC , AB < AC , M là trung điểm BC, từ M kẻ đg thẳng vuông góc với tia phân giác của góc A tại N, Cắt AB và AC tại E và F . CM
a) tam giác AEF cân
b) BE+CF
c) AE=(AB+AC)/2
Cho tam giác ABC cân tại A.Kẻ BE vuông góc AC {E thuộc AC} và CF vuông góc AB {F thuộc AB}.Chứng minh rằng BE=CF.
Vì tam giác ABC cân tại A
=> góc ABC= góc ACB ( 2 góc ở đáy)
Xét tam giác FBC vuông tại F và tam giác ECB vuông tại E có:
BC là cạnh chung
Góc ABC = góc ACB (cmt)
Suy ra Tam giác FBC=tam giác ECB ( c.h-g.n)
=> CF= BE ( 2 cạnh tương ứng)
Vậy BE=CF (đpcm)
Cho tam giác ABC cân tại a.Điểm D là trung điểm của BC a) chứng minh tam giác ADB bằng tam giác ADC b) vẽ BE vuông góc với AC (E thuộc AC).Gọi F là giao điểm của AD và BE chứng minh đường thẳng CF vuông góc AB
cho tam giác ABC cân tại A và các điểm E,F lần lượt nằm trên các cạnh AC,AB sao cho BE vuông góc với AC,CF vuông góc với AB(H4.69).Chứng mình BE=CF
Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
=>BE=CF
Cho tam giác ABC cân tại A (góc A nhọn). kẻ BE vuông AC, CF vuông AB (E thuộc AC, F thuộc AB).
a, Chứng minh tam giác ABC = tam giác ACF.
b, gọi M là giao điểm của BE và CF, chứng minh AM là tia phân giác góc BAC
Giúp em với ạ em đg cần gấp. Cảm mơn mn trc
a: Xet ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
AF=AE
Do đó: ΔAFM=ΔAEM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC
Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ BM//EF a, C/m ABM là tam giác cân b, C/m MF=BE=CF c, Qua D vẽ đường vuông góc với BC cắt tia AH tại I. C/m IF vuông góc với AC