Tính \(\frac{3^{-m}}{81}\)=27
Find m: \(\frac{3^{-m}}{81}=27\)
\(\frac{3^{-m}}{81}=27\)
\(=>3^{-m}=27\cdot81\)
\(3^{-m}=2187\)
Vì nếu \(k^{-m}\) thì => k = \(\frac{1}{k^m}\)
mà 2187 \(\in N\)
=> Không tìm được m thỏa mãn yêu cầu đề bài.
\(\frac{3^{-m}}{81}=27\Rightarrow3^{-m}=27.81=2187=3^7\)
\(\Rightarrow-m=7\)
\(\Rightarrow m=-7\)
tính nhanh
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+....\frac{1}{59049}\)
Đặt \(A=\frac{1}{3}+\frac{1}{9}+.......+\frac{1}{59049}\)
\(3A=3.\left(\frac{1}{3}+\frac{1}{9}+......+\frac{1}{59049}\right)\)
\(3A=1+\frac{1}{3}+........+\frac{1}{19683}\)
\(3A-A=\left(1+\frac{1}{3}+......+\frac{1}{19683}\right)-\left(\frac{1}{3}+\frac{1}{9}+........+\frac{1}{59049}\right)\)
\(2A=1-\frac{1}{59049}\)
\(2A=\frac{59048}{59049}\)
\(A=\frac{59048}{59049}:2\)
\(A=\frac{59048}{118098}\)
Tính nhanh:
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=1-\frac{1}{729}\)
\(\Rightarrow2A=\frac{728}{729}\)
\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)
\(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow2A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}\)
\(\Rightarrow2A-A=\frac{1}{3^1}-\frac{1}{3^7}\)
\(\Rightarrow A=\frac{1}{3^1}-\frac{1}{3^7}\)
find m such that\(\frac{3^{-m}}{81}\)=27. Answer: m=... .Giúp mình với.
tính
\(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}\)
3^12.(3^4)^11/(3^3)^10.(3^2)^15=3^12.3^44/3^30.3^30=3^56/3^30
=3^17.9^22/3^30.9^15=9^7/3^13=3^14/3^13=3^1=3
giùm nhé bạn
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+......+\frac{1}{59049}\)
Tính biểu thức trên
A=$\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+......+\frac{1}{59049}$
3A=$\frac{1}+frac{1}{3}+\frac{1}{9}+\frac{1}{27}+......+\frac{1}{19683}$
3A-A=2A=1-1/59049=59048/59049
A=59048/118098
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
Tính nhanh na
tổng các ps trên là ; \(\frac{364}{729}\)
đặt biểu thức đó là X
ta có :
\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3X-X=1-\frac{1}{729}\)
\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)
cách tính nhanh phân số \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{19683}\)
\(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{-3}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)