Tìm cá số nguyên x,y thỏa mãn phương trình:
\(x^2-2x=27x^3\)
Tìm số nguyên x,y thỏa mãn 2 phương trình sau : 2y^2x + x + y + 1 = x^2 + 2y^2 + xy
=>(x-1)(2y^2+y+1)= -2
lập hệ phương trình ng nguyên các ước của hai rồi giải
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
Tìm các cặp số nguyên (x; y) thỏa mãn phương trình: \(2x^2+2y^2 -2xy+y+x-10=0\)
Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)
Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)
Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)
Lập bảng:
\(y\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) |
\(x\) | \(-1\) | \(\varnothing\) | \(-3\) | \(2\) | \(\varnothing\) | \(0\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Tìm các cặp số nguyên x , y thỏa mãn phương trình: x^3 = y^3 - 2y^2 + 3y - 1
Tìm các số nguyên dương x,y thỏa mãn phương trình: xy+2x=32-\(\frac{x}{y}\)
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0