So sánh
\(\frac{10^{37}+1}{10^{36}+1}\)và \(\frac{10^{36}+1}{10^{35}+1}\)
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
( xét A và B so sánh với 1 nhé)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1
10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1
=> 10A < 10B
=> A < B
Tk mk nha
M=$\frac{2022^{10}+1}{2023^{10}+1}$
N=$\frac{2023^{10}+1}{2024^{10}+1}$
so sánh M và N
D=\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
E=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+.....\frac{10}{1400}\)
\(D=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(D=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}\)
\(D=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}\)
\(D=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(D=2\left(\frac{1}{4}-\frac{1}{10}\right)=2\cdot\frac{3}{20}=\frac{3}{10}\)
\(E=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(E=\frac{5}{28}+\frac{1}{14}+\frac{1}{26}+...+\frac{1}{140}\)
\(E=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(E=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(E=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(E=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)
So sánh :
\(\frac{10^8+1}{10^9+1}và\frac{10^9+1}{10^{10}+1}\)
\(A=\frac{10^8+1}{10^9+1}=\frac{1}{10}\left(\frac{10^9+10}{10^9+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^9+1}\right)\)
\(B=\frac{10^9+1}{10^{10}+1}=\frac{1}{10}\left(\frac{10^{10}+10}{10^{10}+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^{10}+1}\right)\)
\(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)
\(\Rightarrow A>B\)
Đặt \(M=\frac{10^8+1}{10^9+1}\) và \(N=\frac{10^9+1}{10^{10}+1}\)
Có : \(M=\frac{10^8+1}{10^9+1}\)
\(\Rightarrow10M=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)
Lại có : \(N=\frac{10^9+1}{10^{10}+1}\)
\(\Rightarrow10N=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)
Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\) nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)
\(\Rightarrow10M>10N\Rightarrow M>N\)
Vậy M > N.
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
So sánh:
A=\(\frac{10^{10}-1}{10^{11}-1}\)và B=\(\frac{10^9-1}{10^{10}-1}\)
10A=1011-10/1011-1
=1011-1-9/1011-1
=1 - 9/1011-1
10B=1010-10/1010-1
=1010-1-9/1010-1
=1 - 9/1010-1
Vì 9/1011-1<9/1010-1 nên 1 - 9/1011-1>1 - 9/1010-1
hay 10A>10B
=>A>B(vì 10>0)
\(A=\frac{10^{10}-1}{10^{11}-1}\)
Nhân cả hai vế của A với 10 ta có
\(10A=\frac{10\times\left(10^{10}-1\right)}{10^{11}-1}\)
\(10A=\frac{10^{11}-10}{10^{11}-1}\)
\(10A=\frac{10^{11}-1+9}{10^{11}-1}\)
\(10A=\frac{10^{11}-1}{10^{11}-1}+\frac{9}{10^{11}-1}=1+\frac{9}{10^{11}-1}\left(1\right)\)
\(B=\frac{10^9-1}{10^{10}-1}\)
Nhân cả hai vế của B với 10 ta có
\(10B=\frac{10\times\left(10^9-1\right)}{10^{10}-1}\)
\(10B=\frac{10^{10}-10}{10^{10}-1}\)
\(10B=\frac{10^{10}-1+9}{10^{10}-1}\)
\(10B=\frac{10^{10}-1}{10^{10}-1}+\frac{9}{10^{10}-1}=1+\frac{9}{10^{10}-1}\left(2\right)\)
\(Từ\left(1\right)và\left(2\right)\Rightarrow1+\frac{9}{10^{11}-1}< 1+\frac{9}{10^{10}-1}\)
\(\Rightarrow10A< 10B\)
Vậy A < B
ta có
\(10A=\frac{10^{11}-10}{10^{11}-1}=\frac{10^{11}-1+11}{10^{11}-1}=\frac{10^{11}-1}{10^{11}-1}+\frac{11}{10^{11}-1}\)
\(=1+\frac{11}{10^{11}-1}\)
\(10B=\frac{10^{10}-10}{10^{10}-1}=1+\frac{11}{10^{10}-1}\left(tươngtựA\right)\)
vì mẫu càng nhỏ thì phân số càng lớn nên
\(\frac{11}{10^{11}-1}< \frac{11}{10^{10}-1}\)
\(\Rightarrow10A< 10B\Rightarrow A< B\)
Vậy A<B
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
Bài 1: so sánh
a)\(\frac{14}{21}va\frac{60}{72}\)
b)\(\frac{38}{133}va\frac{129}{344}\)
c)\(\frac{11}{54}va\frac{22}{37}\)
d) \(A=\frac{10^{1990}+1}{10^{1991}+1}vaB=\frac{10^{1991}+1}{10^{1992}+1}\)
a) \(\frac{14}{21}=\frac{2}{3}=\frac{4}{6}\)
\(\frac{60}{72}=\frac{5}{6}\)
Vì \(\frac{4}{6}< \frac{5}{6}\)
nên \(\frac{4}{21}< \frac{60}{72}\)
câu 1: so sánh A và B
A=\(\frac{10^{15}+1}{10^{16}+1}\)
B=\(\frac{10^{16}+1}{10^{17}+1}\)
Câu 2:so sánh 637 và 1612
( \(\frac{1}{32}\))7 và( \(\frac{1}{16}\))9
câu 3: so sánh
A=\(\frac{10^{1992}+1}{10^{1991}+1}\), B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
câu 4 : CMR :\(\frac{1}{4}\)+\(\frac{1}{16}\)+\(\frac{1}{36}\)+\(\frac{1}{64}\)+.....+\(\frac{1}{10000}\)<\(\frac{1}{2}\)
câu 5 A=1+\(\frac{2^2}{3^2}\)+\(\frac{2^2}{5^2}\)+\(\frac{2^2}{7^2}\)+.......+\(\frac{2^2}{2009^2}\)
So sanh A với 3
câu 6 cho S = \(\frac{3}{4}\)+\(\frac{8}{9}\)+\(\frac{15}{16}\)+......+\(\frac{n^2-1}{n^2}\)
CMR với mọi số tự nhiên n\(\ge\)2 thì 3 không thể là số nguyên