Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:46

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

Xyz OLM
30 tháng 12 2021 lúc 23:51

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2018 lúc 16:05

Chọn đáp án D

Hùng Bất Lực
Xem chi tiết
Phan Trọng Đĩnh
15 tháng 1 2020 lúc 22:09

Các biểu thức ở trong căn đều đưa được về bình phương
\(\sqrt{4x+2\sqrt{x}+1}=\sqrt{\left(2\sqrt{x}+1\right)^2}=\left|2\sqrt{x}+1\right|=2\sqrt{x}+1\)

Tương tự với hai căn còn lại ta sẽ có biểu thức đề cho tương đương với
\(2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\)

Khách vãng lai đã xóa
Nguyễn Hoàng Long
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
Chuyªn gia
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 8 2021 lúc 16:59

Ta chứng minh BĐT sau:

Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)

\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)

Tương tự và cộng lại:

\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)

ILoveMath
Xem chi tiết
Agami Raito
Xem chi tiết
Việt Bắc Nguyễn
28 tháng 3 2019 lúc 20:05

\(A=\sum\sqrt{4x+2\sqrt{x}+1}\)

\(Max_A=+\infty\)

\("="x=y=z=+\infty\)