Tìm x :
\(\left(2x-1\right)^{2k}+\left(y-\frac{1}{2}\right)^{2k}=0\)
giải pt sau bằng các định lý : \(f\left(x\right)=g\left(x\right)\Leftrightarrow\left[f\left(x\right)\right]^{2k+1}=\left[g\left(x\right)\right]^{2k+1}\)
\(\sqrt[2k+1]{f\left(x\right)}=g\left(x\right)\Leftrightarrow f\left(x\right)=\left[g\left(x\right)\right]^{2k+1}\)
\(\sqrt[2k+1]{f\left(x\right)}=\sqrt[2k+1]{g\left(x\right)}\Leftrightarrow f\left(x\right)=g\left(x\right)\)
\(\sqrt[2k]{f\left(x\right)}=g\left(x\right)\Leftrightarrow\orbr{\begin{cases}g\left(x\right)>0\\f\left(x\right)=\left[g\left(x\right)\right]^{2k}\end{cases}}\)
\(\sqrt[2k]{f\left(x\right)}=\sqrt[2k]{g\left(x\right)}\Leftrightarrow\hept{\begin{cases}f\left(x\right)\ge0\\g\left(x\right)\ge0\\f\left(x\right)=g\left(x\right)\end{cases}}\)hoặc
a) \(\sqrt{x+1}+\sqrt{4x+13}=\sqrt{3x+12}\)
b)\(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
c) \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
bổ xung định lý thứ 5
f(x)>=0 hoặc g(x)>=0 và f(x)=g(x)
@Ai đó:v
Tìm min của 2x^2 + y^2 +z^2 biết xy + yz + zx = 1 và x, y, z > 0
Cách của em như sau(ko chắc đâu nhé, cách này em mới nghĩ ra thôi): Ta cho k >0thỏa mãn \(A\ge k\left(xy+yz+zx\right)\)
Hay
\(2x^2-x\left(ky+kz\right)+y^2-kyz+z^2\ge0\)
Có:\(VT=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)y^2-\left(2k^2+8k\right)yz+\left(8-k^2\right)z^2}{8}\)
\(=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)\left(y-\frac{\left(2k^2+8z\right)z}{2\left(8-k^2\right)}\right)^2+\frac{z^2}{4}\left[4\left(8-k^2\right)-\frac{\left(2k^2+8k\right)^2}{8-k^2}\right]}{8}\)
Bây giờ để bđt là luôn đúng thì \(8-k^2\ge0\) và \(4\left(8-k^2\right)=\frac{\left(2k^2+8k\right)^2}{8-k^2}\)
Ngay lập tức ta thấy \(k=\sqrt{5}-1\)
Từ đó..
Chihiro vãi cả hu hu, t giải giúp một đứa bạn thôi mà;(( vả lại t bảo là ko chắc nên đừng ném đá nhá!
Tìm x,y biết :
\(_{\left(3x-2\right)}2k\)\(_{+\left(y-\dfrac{1}{4}\right)}2k\)=0 (k thuộc N)
\(\left(3x-2\right)^{2k}+\left(y-\dfrac{1}{4}\right)^{2k}\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(3x-2\right)^{2k}=0\\\left(y-\dfrac{1}{4}\right)^{2k}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{1}{4}\end{matrix}\right.\)
Cần gấp các cậu ơi, giúp mình câu này với
Tìm cặp số x, y biết:
1. (3x+5)2016 + (5y-4)2018 =0
2. \(\left(\frac{3x-5}{9}\right)^{2k}+\left(\frac{3y+1,4}{5}\right)^{2k}\le0\left(k\in N\right)\)
BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)
Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)
BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.
Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0
Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)
\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)
Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)
Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)
Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng)
Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*) với k = 4/3 ta được đpcm.
Lời giải xin để cho mọi người.
PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487
Ví dụ 2: Cho x,y,z > 0 và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)
Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)
Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)
Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs
Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!
zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà
https://artofproblemsolving.com/community/c6h1900105p12986856 đây là sol dùng Vacs của teomihai, có từ 20/8/2019
Câu hỏi: Rút gọn biểu thức A = \(\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(\left(2k\right)^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(\left(2k-1\right)^4+\frac{1}{4}\right)}\) (k thuộc N*)
TÌM GIÁ TRỊ CỦA K SAO CHO PHƯƠNG TRÌNH \(\left(2X+1\right)\left(9X+2K\right)-5\left(X+2\right)=40\) CÓ NGHIỆM X=2
Cho hàm số \(y=2k\left(x-1\right)^2-kx\left(2x+1\right)+5x\left(k+1\right)\)
a. Chứng tỏ rằng luôn là hàm số bậc nhất
b. Tìm k để đường thẳng (d) cách gốc tọa độ 1 khoảng h=1.
CHo hai phương trình: \(x^2+x+k-1=0\left(1\right)\) và \(x^2-\left(k+2\right)x+2k+4=0\left(2\right)\). Với giá trị nào của k thì 2 phương trình trên tương đương