Tìm số tự nhiên n sao cho 9n=42513*
Tìm số tự nhiên n sao cho 9n=42513*
a/ Tìm số tự nhiên n > 1 sao cho:
n + 8 chia hết cho n + 2
b/ Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau:
9n + 11 và 12n + 15
a: \(\Leftrightarrow n+2=6\)
hay n=4
a) \(\left(n+2\right)+6⋮\left(n+2\right)\Rightarrow\left(n+2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in\) N*, n>1 \(\Rightarrow n\in\left\{4\right\}\)
b) Gọi d là \(UCLN\left(9n+11;12n+15\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left(9n+11\right)⋮d\\\left(12n+15\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(36n+44\right)⋮d\\\left(36n+45\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(36n+45\right)-\left(36n+44\right)⋮d\Rightarrow1⋮d\Rightarrowđpcm\)
Vậy 2 số trên luôn là 2 số nguyên tố cùng nhau
Tìm số tự nhiên n sao cho \(9n^2+9n-8\)là số chính phương.
\(9n^2+9n-8=(3n)^2+6n+1+3n-9 = (3n+1)^2+(3n-9) để là số chính phương thì 3n-9=0=> n=3 \)
Tìm các số tự nhiên n sao cho 9n+24 và 3n+4 nguyên tố cùng nhau
Tìm số tự nhiên n sao cho phân số \(\frac{9n+24}{3n+4}\)nhận giá trị tự nhiên?
tìm số tự nhiên n sao cho phân số
\(\frac{9n+24}{3n+4}\)
số tự nhiên
Tìm tất cả các số tự nhiên m,n sao cho \(A=3^{66m^2+9n^3-2008}+4\) là số nguyên tố.
Tim các số tự nhiên n sao cho 4n+5 và 9n+7 đều là các số chính phương
Ta đặt :
\(\hept{\begin{cases}4n+5=a^2\\9n+7=b^2\end{cases}}\)( a,b là các số tự nhiên )
\(\Rightarrow\hept{\begin{cases}36n+45=9a^2\\36n+28=4b^2\end{cases}}\)
\(\Rightarrow\left(36n+45\right)-\left(36n+28\right)=9a^2-4b^2\)
\(\Rightarrow17=\left(3a-2b\right)\left(3a+2b\right)\)
Vì a, b là các số tự nhiên nên 3a-2b , 3a+3b là cá số nguyên và 3a-2b <= 3a+2b nên ta có
\(\left(3a-2b;3a+2b\right)\in\left\{\left(1;17\right);\left(-17;-1\right)\right\}\)
\(\Rightarrow6a\in\left\{18;-18\right\}\)
\(\Rightarrow a\in\left\{3;-3\right\}\)
Mà a là số tự nhiên nên a=3
\(\Rightarrow4n+5=a^2=3^2=9\)
\(\Rightarrow4n=4\)
\(\Rightarrow n=1\)
Vậy n=1
Có bao nhiêu số tự nhiên a sao cho lim 9 n + 3 n + 1 6 n + 9 n + 2 ≤ 1 3 a ?
A. 1
B. 2019
C. 2
D. 3