timd x, y là các số nguyên thỏa mãn 10y2+x2-6xy-5y+6
Tìm các số nguyên x, y thỏa mãn: 10y2 + x2 – 6xy - 5y +6 = 0
Tìm tất cả các số nguyên x,y . thỏa mãn phương trình : x2+6xy+5y2-4y-8=0
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)
\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)
\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)
Vì x,y nguyên nên ta có các trường hợp sau:
TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)
Các TH còn lại bạn tự làm nhé
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)
\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)
\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)
-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)
cho x,y thỏa mãn 2x2 +10y2- 6xy - 2y + 10 =0. tính giá trị của A = \(\dfrac{\left(x+y-4\right)^{2018}-y^{2018}}{4}\)
Sửa đề: \(2x^2+10y^2-6xy-2y-6x+10=0\)
\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+\left(y^2-2y+1\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(x-3y\right)^2+\left(y-1\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=1\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Thay vào \(A\)
\(A=\dfrac{\left(3+1-4\right)^{2018}-1^{2018}}{4}=-\dfrac{1}{4}\)
a) Tìm các số nguyên dương x,y thỏa mãn 2(x+y)+16=3xy
b)Tìm các số nguyên dương x,y thỏa mãn x2 - 2y2 = 5
c) CMR: đa thức B = 5x2 + 5y2 + 5z2 + 6xy -8xz - 8yz
d) CM số A = 99...9800...01 ( có n chữ số 9 và n chữ số 0) là số chính phương
Tìm các cặp số nguyên (x;y) t/mãn: 4x-5y-6xy+7=0
Cho x, y là các số thực lớn hơn 1 thỏa mãn x 2 + 9 y 2 = 6 x y . Tính M = 1 + log 12 x + log 12 y 2. log 12 x + 3 y .
A. M = 1.
B. M = 1 + log 12 3 y log 12 6 .
C. M = 2 .
D. M = log 12 6.
Cho x, y là các số thực lớn hơn 1 thỏa mãn x2 + 9y2 = 6xy. Tính M = 1 + log 12 x + log 12 y 2 . log 12 ( x + 3 y ) .
A. M = 1.
B. M = 1 + log 12 3 y log 12 6 .
C. M = 2.
D. M = log12 6.
Đáp án A.
Ta có x2 + 9y2 = 6xy <=> (x – 3y)2 = 0 <=> x = 3y.
⇒ M = 1 + log 12 x + log 12 y 2 . log 12 6 y = log 12 12 + log 12 3 y 2 log 12 36 y 2
= log 12 36 y 2 log 12 36 y 2 = 1 .
Tìm tất cả các cặp số x;y thỏa mãn :x2+2y2+2xy -5x-5y=-6 để x+y là số nguyên
Tìm các cặp số nguyên x, y thỏa mãn: 3xy+2x-5y=6
\(3xy+2x-5y=6\)
\(\Leftrightarrow9xy+6x-15y=18\)
\(\Leftrightarrow\left(9xy+6x\right)-\left(15y+10\right)=8\)
\(\Leftrightarrow3x.\left(3y+2\right)-5\left(3y+2\right)=8\)
\(\Leftrightarrow\left(3x-5\right)\left(3y+2\right)=8\)
Do x,y nguyên nên ta có bảng sau
3x - 5 | 1 | 8 | -1 | -8 | 4 | 2 | -4 | -2 |
3y + 2 | 8 | 1 | -8 | -1 | 2 | 4 | -2 | -4 |
x | 2 | \(\frac{13}{3}\)( loại ) | \(\frac{4}{3}\)( loại ) | -1 | 3 | \(\frac{7}{3}\)( loại ) | \(\frac{1}{3}\)( loại ) | 1 |
y | 2 | \(-\frac{1}{3}\)( loại ) | \(-\frac{10}{3}\)( loại ) | -1 | 0 | \(\frac{2}{3}\)( loại ) | \(-\frac{4}{3}\)( loại ) | -2 |
Bạn tự KL nhé