Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nguyễn Trúc Quỳnh
Xem chi tiết
PHAN TINA
Xem chi tiết
Harry Potter
25 tháng 6 2018 lúc 20:16

Qui đồng lên là đc

1/a-1/b=b-a/ab=1/ab

Vậy b-a=1 hay b=a+1 với mọi a,b nguyên(a,b#0)

hok tốt

Tiểu thư họ Đoàn
Xem chi tiết
đôrêmon0000thếkỉ
13 tháng 9 2017 lúc 20:36

a=1;b=1;c=1 cmr sai đâu tui chịu trách nhiệm

Trần Minh Hoàng
13 tháng 9 2017 lúc 20:42

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{bc+ac+ab}{abc}\)

Vì \(\frac{bc+ac+ab}{abc}\)= 1 nên bc + ac + ab = abc. Suy ra a = 1 thì b = 2, c = 3 hoặc b = 3, c = 2; a = 2 thì b = 1, c = 3 hoặc b = 3, c = 1; a = 3 thì b = 2, c = 1 hoặc b = 1, c = 2

khangSV
Xem chi tiết
Ác Mộng
14 tháng 7 2015 lúc 15:23

1/a-1/b=1/a.1/b

=>b-a/ab=1/ab

=>b-a=1

Vậy có vô số a,b sao cho b-a=1

Trịnh Ngọc Thành
Xem chi tiết
Blade Lord
Xem chi tiết
Hiếu Phạm
Xem chi tiết

Ta có: \(\frac{1}{x\left(a-b\right)\left(a-c\right)}+\frac{1}{y\left(b-a\right)\left(b-c\right)}+\frac{1}{z\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{x\left(a-b\right)\left(a-c\right)}-\frac{1}{y\left(a-b\right)\left(b-c\right)}+\frac{1}{z\left(a-c\right)\left(b-c\right)}\)

\(=\frac{yz\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\frac{xz\left(a-c\right)}{yxz\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{xy\left(a-b\right)}{zxy\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\frac{yz\left(b-c\right)-xz\left(a-c\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(=\frac{yz\left(b-c\right)-xz\left[\left(b-c\right)+\left(a-b\right)\right]+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{yz\left(b-c\right)-xz\left(b-c\right)-xz\left(a-b\right)+xy\left(a-b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(y-x\right)-\left(a-b\right)x\left(z-y\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(c+a-b-b-c+a\right)-\left(a-b\right)x\left(a+b-c-c-a+b\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)z\left(2a-2b\right)-\left(a-b\right)x\left(2b-2c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)2z\left(a-b\right)-\left(a-b\right)2x\left(b-c\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(2z-2x\right)}{xyz\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{2\left(z-x\right)}{xyz\left(a-c\right)}=\frac{2\left(a+b-c-b-c+a\right)}{xyz\left(a-c\right)}\)

\(=\frac{2\left(2a-2c\right)}{xyz\left(a-c\right)}=\frac{2.2\left(a-c\right)}{xyz\left(a-c\right)}=\frac{4}{xyz}\Rightarrowđpcm\)

Lê Minh Quân
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết