2x = 3y = 4z và x + y + z= 169
help me
tìm x, y,z biết 2x=3y=4z và x+y+z=169
\(2x=3y=4z\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{169}{13}=13\)
\(\Rightarrow\frac{x}{6}=13\Rightarrow x=13.6=78\)
\(\Rightarrow\frac{y}{4}=13\Rightarrow y=13.4=52\)
\(\Rightarrow\frac{z}{3}=13\Rightarrow z=13.3=39\)
Vậy ...
Thánh cũng lạy con vì thánh mới lớp 6
2x=3y=4z và x+y+z=169
zz
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK
\(2x=3y=4z\)\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)\(=\frac{x+y+z}{6+4+3}=\frac{169}{13}=13\)( Theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=13\cdot6=78\\y=13\cdot4=52\\z=13\cdot3=39\end{cases}}\)
Tìm GTNN: 2x^2 + 3y^2 + 4z^2 -2(x+y+z) +2. Help me!!!
`2x^2+3y^2+4z^2-2(x+y+z)+2`
`=2x^2-2x+1/2+3y^2-2y+1/3+4z^2-2z+1/4+11/12`
`=2(x-1/2)^2+3(y-1/3)^2+4(z-1/4)^2+11/12>=11/12`
Dấu "=" xảy ra khi \(\begin{cases}x=\dfrac12\\y=\dfrac13\\z=\dfrac14\\\end{cases}\)
mọi người giải giúp em nha:
x/10=y/6=z/3 và 2x+3y-2z=16
x=y/6=z/3 và 2x+3y-4z=-24
tối nay đi học nên đaNG CẦN GẤP, help me
sử dụng tính chất của dãy tỉ số bằng nhau
Vô câu hỏi tương tự mà tham khảo
Tự làm đi nhóc cái này còn cơ bản nên suy nghĩ chút đi
Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{20+18-6}=\frac{16}{32}=\frac{1}{2}\)
=> \(\hept{\begin{cases}\frac{x}{10}=\frac{1}{2}\\\frac{y}{6}=\frac{1}{2}\\\frac{z}{3}=\frac{1}{2}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{2}.10=5\\y=\frac{1}{2}.6=3\\z=\frac{1}{2}.3=\frac{3}{2}\end{cases}}\)
Vậy ...
* Ta có x/10=y/6=z/3 => 2x/20=3y/18=2z/6 vafd 2x+3y-2z=16
Áp dụng tính chát dãy tỉ số bằng nhau ta đc
2x/20=3y/18=2z/6=2x+3y-2z/20+18-6=16/30=8/15
+) x=16/3
+) y=16/5
+) z=8/5
kết luận tự viết và phần còn lại tương tự nhé e.
Tim x,y,z biet:
a) x/3 = y/-4 = z/-5 va 2x + 3y - 4z = 70
b) x/3 = y/2; x/5 = 2/7 va x+y+z = 184
c) x/5 = y/-7 ; y/4 = z/15 va x+3y-4z=18
d) 2x/3 = 3y/4 = 4z/5 va x+y+z=49
e) x/y = 3/7 va x.y = 84
Help me, pleass!!
Hoi dong ARMY dung vo tam luot qua nhe!!
Ai nhanh nhat to tick cho!!😘
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25
Tìm hai số x,y biết:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(2x+3y-4z=-200\)
Help me! giúp tớ với!
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y-4z}{2\cdot3+3\cdot4-4\cdot5}=\frac{-200}{-2}=100\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=100\\\frac{y}{4}=100\\\frac{z}{5}=100\end{cases}\Rightarrow\hept{\begin{cases}x=300\\y=400\\z=500\end{cases}}}\)
Vậy.......
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{3y}{12}=\frac{4z}{20}=\frac{2x+3y-4z}{6+12-20}=\frac{-200}{-2}=100\)
\(\Rightarrow x=100.3=300\)
\(y=100.4=400\)
\(z=100.5=500\)
Vậy x = 300; y = 400; z = 500
Áp dụng tính chất dãy tỉ số bằng nhau
ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y-4z}{6+12-20}=\frac{-200}{-2}=100.\)
\(\Rightarrow\frac{x}{3}=100\Rightarrow x=300\)
\(\frac{y}{4}=100\Rightarrow y=400\)
\(\frac{z}{5}=100\Rightarrow z=500\)
Bài 2: Tìm x,y,z biết a) \(\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}\)và 2x + 3y - 4z = 25 b) \(\frac{z}{x}=\frac{-3}{5}\)và 40x + 70z = 1000 c) \(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)và xyz = -1680 d) 2x = 3y = 4z và x + y + z = 169
a, dễ nhé
b, \(\frac{z}{x}=\frac{-3}{5}\Leftrightarrow\frac{z}{-3}=\frac{x}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{z}{-3}=\frac{x}{5}=\frac{40x+70z}{-120+350}=\frac{1000}{230}=\frac{100}{23}\)
tự thay nhé
c, Đặt \(\hept{\begin{cases}x=5k\\y=6k\\z=7k\end{cases}}\)
Ta có : \(xyz=-1680\)
\(\Leftrightarrow5k.6k.7k=-1680\)
\(\Leftrightarrow210k^3=-1680\Leftrightarrow k^3=-8\Leftrightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=-10\\y=-12\\z=-14\end{cases}}\)
d, Theo bài ra ta có : \(2x=3y=4z\Leftrightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
Áp dụng t/c dãy tỉ số bằng nhau ra luôn nhé
a) \(\hept{\begin{cases}\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}\\2x+3y-4z=25\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}\\2x+3y-4z=25\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}=\frac{2x+3y-4z}{-4+21-12}=\frac{25}{5}=5\)
\(\Rightarrow\hept{\begin{cases}x=-10\\y=35\\z=15\end{cases}}\)
b) \(\hept{\begin{cases}\frac{z}{x}=\frac{-3}{5}\\40x+70z=1000\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{-3}=\frac{x}{5}\\40x+70z=1000\end{cases}}\Rightarrow\hept{\begin{cases}\frac{70z}{-210}=\frac{40x}{200}\\40x+70z=1000\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{70z}{-210}=\frac{40x}{200}=\frac{40x+70z}{200-210}=\frac{1000}{-10}=-100\)
\(\Rightarrow\hept{\begin{cases}x=-500\\z=300\end{cases}}\)
c) Đặt \(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=6k\\z=7k\end{cases}}\)
xyz = -1680 <=> 5k.6k.7k = -1680
<=> 210k3 = -1680
<=> k3 = -8
<=> k3 = (-2)3
<=> k = -2
\(\Rightarrow\hept{\begin{cases}x=-10\\y=-12\\z=-14\end{cases}}\)
d) \(\hept{\begin{cases}2x=3y=4z\\x+y+z=169\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\\x+y+z=169\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}=\frac{169}{\frac{13}{12}}=156\)
\(\Rightarrow\hept{\begin{cases}x=78\\y=52\\z=39\end{cases}}\)
3x=2y=z và x+y+z=99
2x=3y=-2z và 2x-3y+4z=48
x/0.5=y/0.3=z/0.2 và 2x+3y-4z=34
x-1/3=y-2/4=z-3/5 và x+y+z=30
x+1/3=y+2/-4=z-3/5 và 3x+2y+4z=47
x/4=y/4 và x^2y=100
giúp mình với
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x+y+z-6}{12}=\frac{24}{12}=2\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)
mọi người giải giúp mình với
x/3=y/4 và x^2+y^2=100
x/4=y/7 và 3x^2-4y^2=100
x/2=y=z/3 và 3x-2y+4z=16
x=y/6=z/3 và 2x-3y=4z=-24
x/-3=y/-5=z/-4 và 3z-2x=36
3x=2y=z và x+y+z=99
2x+3y+-2z và 2x-3y+4z=48
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...