biểu diễn các lũy thừa sau thành những lũy thừa của cùng một cơ số
a (32)3; (33)2; (32)5; 98; 276; 8110
b (53); (54)3 ; (52)4 ; 255; 12514
gips mình với mình cảm ơn nhiều
1)nêu 3 cách viết của số hữu tỉ \(-\frac{3}{5}\) và biểu diễn số hữuu tỉ đó trên trục số
2)đinh nghĩa lũy thừa vs số mũ tự nhiên của một số hữuu tỉ
3) viếtcác công thức
- x 2 lũy thừa cùng cơ số
- : 2 lũy thừa cùng cơ số khác 0
-lũy thừa của 1 tích
-lũy thừa của 1 thương
3
\(x^m.x^n=x^{m+n}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.y^m=\left(x.y\right)^m\)
\(x^m:y^m=\left(\frac{x}{y}\right)^m\)
2, Định nghĩa: Lũy thừa bậc n của một số hữu tỉ x, kí hiện \(^{x^n}\), là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)
1
\(\frac{-3}{5}=\frac{-6}{10}=\frac{-9}{15}\)
a) Biểu diễn các lũy thừa sau thành những lũy thừa của cùng một cơ số:
\(\left(3^2\right)^3;\left(3^3\right)^2;\left(3^2\right)^5;9^8;27^6;81^{10}\) ( Viết hai cách)
b) So sánh : \(5^{28}\)và \(26^{14}\)
hlepp meeeeee:<
a) Cách 1: \(\left(3^2\right)^3=3^{2.3}=3^6\)
\(\left(3^3\right)^2=3^{3.2}=3^6\)
\(\left(3^2\right)^5=3^{2.5}=3^{10}\)
\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}\)
\(81^{10}=\left(3^4\right)^{10}=3^{4.10}=3^{40}\)
Cách 2: \(\left(3^2\right)^3=9^3\)
\(\left(3^3\right)^2=3^{3.2}=\left(3^2\right)^3=9^3\)
\(\left(3^2\right)^5=9^5\)
\(9^8\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
\(81^{10}=\left(9^2\right)^{10}=9^{2.10}=9^{20}\)
Trả lời :
b)
Ta có : \(5^{28}=5^{2.14}=\left(5^2\right)^{14}=25^{14}< 26^{14}\)
\(\Rightarrow5^{28}< 26^{14}\)
a) C1 : (32)3 = 32.3 = 36 ;
C2 : (32)3 = 32.32.32 = 32 + 2 + 2 = 36
b) C1 : (33)2 = 33.2 = 36
C2 : (33)2 = 33.33 = 33 + 3 = 36
c) C1 (32)5 = 32.5 = 310
C2 (32)5 = 32.32.32.32.32 = 32 + 2 + 2 + 2 + 2 = 310
d) 98 = (32)8 = 32.8 = 316
98 = (3.3)8 = 38.38 = 316
e) 276 = (3.3.3)6 = 36.36.36 = 36 + 6 +6 = 318
276 = (33)6 = 33.6 = 318
g) 8110 = (3.3.3.3)10 = 310.310.310.310 = 310 + 10 + 10 + 10 = 340 ;
8110 = (34)10 = 34.10 = 340
Viết các công thức :
- Nhân hai lũy thừa cùng cơ số
- Chia hai lũy thừa cùng cơ số khác 0
- Lũy thừa của một lũy thừa
- Lũy thừa của một tích
- Lũy thừa của một thương
Các công thức lần lượt là:
♦ \(a^m.a^n=a^{m+n}\)
♦ \(a^m:a^n=a^{m-n}\)
♦ \(\left(a^m\right)^n=a^{m.n}\)
♦ \(\left(m.n\right)^a=m^a.n^a\)
♦ \(\left(\dfrac{m}{n}\right)^a=\dfrac{m^a}{n^a}\)
Lần lượt :
a) am.an = am+n
b) am : an = am-n (m≥n , a≠0)
c) (an)m = am.n
d) (a.b)m = am.bm
e- (\(\dfrac{a}{b}\))m = \(\dfrac{^{a^m}}{b^m}\)
am.an =am+n
am:an=am-n
(am)n=amn
.....................
Viết các công thức :
-chia 2 lũy thừa cùng cơ số ?
-Nhân 2 lũy thừa cùng cơ số khác 0 ?
Lũy thừa của 1 lũy thừa ?
Lũy thừa của 1 tích ?
Lũy thừa của một thương ?
\(x^m:x^n=x^{m-n}\)
\(x^m.x^n=x^{m+n}\)
\(\left(x^m\right)^n=x^{m.n}\)
Biểu diễn số sau thành lũy thừa cùng một cơ số:
\(12^3\).\(3^3\)
\(12^3\cdot3^3=\left(12\cdot3\right)^3=36^3\)
Biểu diễn các lũy thừa sau đây thành những lũy thừa của cùng 1 cơ số .a,( 3^2)^3;(3^3)^2;(3^2)^5;9^8;27^6;81^10 b,(5^3)^2 ; (5^2)^4;(5^4)^3;25^5;125^14
a: \(\left(3^2\right)^3=3^6\)
\(\left(3^3\right)^2=3^6\)
\(\left(3^2\right)^5=3^{10}\)
\(9^8=3^{16}\)
\(27^6=3^{18}\)
\(81^{10}=3^{40}\)
b: \(\left(5^3\right)^2=5^6\)
\(\left(5^2\right)^4=5^8\)
\(\left(5^4\right)^3=5^{12}\)
\(25^5=5^{10}\)
\(125^{14}=5^{42}\)
Biểu diễn các lũy thừa sao đây thành những lũy thùa cùng cơ số
(33)2 ; (23)5 ; 8110 ; (32)3
b, (53) ; (54)3 ; (52)4
Viết các công thức: nhân, chia hai lũy thừa cùng cơ số. Lũy thừa của: Lũy thừa, một tích, một thương.
viết công thức lũy thừa của một lũy thừa - Hoc24
Viết công thức nhân hai lũy thừa cùng cơ số, chia hai lũy thừa cùng cơ số ? - Hoc24
\(a^m:a^n=a^{m-n}\)
\(a^m\cdot a^n=a^{m+n}\)
\(\left(a^m\right)^n=a^{mn}\)
a) Dùng công thức lũy thừa với số mũ tự nhiên để tính : 23 ; 32 ; 43 ; 103
b) 1. Viết công thức nhân hai lũy thừa cùng cơ số , phát biểu bằng lời công thức
2. Áp dụng công thức nhân hai lũy thừa cùng cơ số viết về một lũy thừa : 103.105 ; x3.x5.x
c) 1. Viết công thức chia hai lũy thừa cùng cơ số , phát biểu bằng lời công thức
2. Áp dụng công thức chia hai lũy thừa cùng cơ số viết về một lũy thừa : 77:73 ; a11:a
d) 1. Viết công thức lũy thừa của lũy thừa , phát biểu bằng lời công thức
2. Áp dụng công thức so sánh : a)2300và3200 b)2233và3322
Bài 4. Viết các biểu thức sau dưới dạng an (a thuộc Q và a thuộc N)
4.25:(23.1/16)
Dạng 3. Tính lũy thừa của một lũy thừa
Bài 5. Viết các số (0,25)8 và (0,125)4 dưới dạng các lũy thừ cơ số 0,5.
Bài 6.
a) Viết các số 227 và 318 dưới dạng các lũy thừa có số mũ là 9.
b) Trong hai số 227 và 318 , số nào lớn hơn?
Bài 7. Cho x thuộc Q và x khác 0 . Viết x10 dưới dạng:
a) Tích của hai lũy thừa trong đó có một thừa số là x7 .
b) Lũy thừa của x2 .
c) Thương của hai lũy thừa trong đó số bị chia là x12 .
Bài 6:
a: \(2^{27}=8^9\)
\(3^{18}=9^9\)
b: Vì \(8^9< 9^9\)
nên \(2^{27}< 3^{18}\)