các bạn giúp mk giải bài tập 18 bài đường thẳng đi qua hai điểm giùm minh nha.trong sgk trang 109
các bạn nào học lớp 6 lấy vở toán (sgk - 109 , 110)các bạn thấy bài đường thẳng đi qua 2 điểm các bạn giúp mình bài 19 với vì bài đấy có hình nên mik ko viết được
Bài 19 trang 109 - Sách giáo khoa toán 6 tập 1
Các bạn, làm ơn giải giùm mình bài 19/ 109 SGK toán 6 tập 1 nhé !
Xem hình vẽ rồi Trên AB lấy M,trên CK lấy P sao cho AM=KP.Chứng minh rằng M,H,P thẳng hàng.
Các bạn tự kẻ thêm vào rồi giải giùm mk nhé.
Nhanh lên nhé.Mai mk kiểm tra rùi.Cảm ơn nhiều!!!
Có thể giaiar dễ hiểu giùm mk đc ko
Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.
Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.
Theo giả thiết ABCD là hình bình hành nên ta có:
ˆDAB=ˆDCB,ˆADC=ˆABC (1)
Theo định lí tổng các góc của một tứ giác ta có:
ˆDAB+ˆDCB+ˆADC+ˆABC=360o (2)
Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o
Vì AG là tia phân giác ˆDAB (giả thiết)
⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)
Vì BG là tia phân giác ˆABC (giả thiết)
⇒⇒ ˆABG=1/2ˆABC
Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o
Xét ΔAGB= có:
ˆBAG+ˆABG=90o (3)
Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:
ˆBAG+ˆABG+ˆAGB=180o (4)
Từ (3) và (4) ⇒ˆAGB=90o
Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o
Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
bạn nào giải giùm mình bài 2,3 sgk lơp 8 trang 66 ,67 phần tứ giác đi mà mai mình nộp rùi k làm đc thì chết các bạn giúp mình nha
bài 2 a, A1 =180-75=105
D= 75 => D1=105
C=60
B=90
b, A1+B1+C1+D1=105+105+60+90=360
C,tổng các góc ngoài của tứ giác bằng 360
bài 3.
a, AB=AD (GT) nên điểm A thuộc dựng trung trực của BD
CB=AD (GT) nên điểm C thuộc đường trung trực của BD
=> AC là đường trung trực của BD
b,
xét tam giác BAC và DAC
BC=CD
AC
AB=AD
=> tam giác BAC=DAC( ccc)
=> B=D ( 2 GÓC TƯƠNG ỨNG )
trong tứ giác ABCD ; A+B+C+D = 360
=> B+D=200
=> B=D=100 độ
Bài 84 (trang 109 SGK Toán 8 Tập 1): Cho tam giác ABC, D là điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB và AC, chúng cắt các cạnh AC và AB theo thứ tự ở E và F.
a) Tứ giác AEDF là hình gì? Vì sao?
b) Điểm D ở vị trí nào trên cạnh BC thì tứ giác AEDF là hình thoi?
c) Nếu tam giác ABC vuông tại A thì tứ giác AEDF là hình gì? Điểm D ở vị trí nào trên cạnh BC thì tứ giác AEDF là hình vuông?
THAM KHẢO:
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
Bài 22 (trang 111 SGK Toán 9 Tập 1)
Cho đường thẳng $d$, điểm $A$ nằm trên đường thẳng $d$, điểm $B$ nằm ngoài đường thẳng $d$. Hãy dựng đường tròn $(O)$ đi qua điểm $B$ và tiếp xúc với đường thẳng $d$ tại $A$.
Tâm là giao điểm của đường vuông góc với tại và đường trung trực của . Dựng đường tròn .
Đường tròn (O) tiếp xúc với d nên d là tiếp tuyến của (O) hay d vuông góc với bán kính của (O) tại tiếp điểm A. Suy ra tâm O của đường tròn nằm trên đường thẳng vuông góc với d tại A.
Lại có (O) qua B nên tâm O của đường tròn nằm trên đường trung trực của AB.
Vậy tâm O là giao điểm của đường vuông góc với d tại A và đường trung trực của AB.Tâm là giao điểm của đường vuông góc với tại và đường trung trực của . Dựng đường tròn .
Các bạn cho mình hỏi còn cách nào để chứng minh hai câu này ngoài cách của sgk không nếu có thì các bạn giải hộ mình nhé thanks nhiều
chứng minh trong tam giác đường thẳng đi qua trung điểm cạch thứ nhất và song song cạnh với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba
chứng minh Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Mong các bạn giải nhanh để mình làm bài tks
Đề bài minh hoạ:
Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}.
Chứng minh định lý:
Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC} (1)
Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN} (2)
Từ (1) và (2) suy ra {\displaystyle NA=NC}. Định lý được chứng minh.
Định lý 2
Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy.[2]
Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ({\displaystyle MA=MB} và {\displaystyle NA=NC}). Chứng minh {\displaystyle {\overline {MN}}\parallel {\overline {BC}}} và {\displaystyle MN={\frac {1}{2}}BC}.
Chứng minh định lý:
Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)
suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}, suy ra {\displaystyle CF=MB} (vì {\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hinh binh hanh, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}. Định lý được chứng minh.
D/L: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
ta lay vd 1 de bai de chung minh:
Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}
ta chung minh dinh ly
Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC} (1)
Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN} (2)
Từ (1) và (2) suy ra {\displaystyle NA=NC}. ( dieu phai chung minh )
D/L : Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy
VD : Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ( và ). Chứng minh và
chung minh dinh li
Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)
suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}, suy ra {\displaystyle CF=MB} (vì {\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hình bình hành, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}
Các bạn cho mình hỏi còn cách nào để chứng minh hai câu này ngoài cách của sgk không nếu có thì các bạn giải hộ mình nhé thanks nhiều
chứng minh trong tam giác đường thẳng đi qua trung điểm cạch thứ nhất và song song cạnh với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba
chứng minh Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Mong các bạn giải nhanh để mình làm bài tks