Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Hà An
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 22:15

A=2(1+3+5+...+97+99)

Số số lẻ trong khoảng từ 1 đến 99 là (99-1):2+1=50(số)

=>Tổng của các số lẻ từ 1 đến 99 là (99+1)*50/2=50*50=2500

=>A=2*2500=5000

B=2(2+4+6+...+98+100)

Số số chẵn trong khoảng từ 2 đến 100 là

(100-2):2+1=50(số)

=>Tổng của các số lẻ từ 2 đến 100 là (100+2)*50/2=50*51=2550

=>B=2*2550=5100

=>A<B

Hà Trí Kiên
Xem chi tiết
Akai Haruma
27 tháng 6 2023 lúc 17:58

1. 

$(3^2-2^3)x+3^2.2^2=4^2.3$

$\Leftrightarrow x+36=48$

$\Leftrightarrow x=48-36=12$

2.

$x^5-x^3=0$

$\Leftrightarrow x^3(x^2-1)=0$

$\Leftrightarrow x^3(x-1)(x+1)=0$

$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$

$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.

$(x-1)^2+(-3)^2=5^2(-1)^{100}$

$\Leftrightarrow (x-1)^2+9=25$

$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$

$\Rightarrow x-1=4$ hoặc $x-1=-4$

$\Leftrightarrow x=5$ hoặc $x=-3$

4.

$(2x-1)^2-(2x-1)=0$

$\Leftrightarrow (2x-1)(2x-1-1)=0$

$\Leftrightarrow (2x-1)(2x-2)=0$

$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$

$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$

$\Lef

『Kuroba ム Tsuki Ryoo...
27 tháng 6 2023 lúc 18:02

`@` `\text {Ans}`

`\downarrow`

\((3^2-2^3)x+3^2.2^2=4^2.3\)

`=> x + (3*2)^2 = 48`

`=> x+6^2 = 48`

`=> x + 36 = 48`

`=> x = 48 - 36`

`=> x=12`

Vậy, `x=12`

\(x^5-x^3=0\)

`=> x^3(x^2 - 1)=0`

`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

Vậy, `x \in {0; +- 1 }`

\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)

`=> (x-1)^2 + 9 = 25*1`

`=> (x-1)^2 + 9 = 25`

`=> (x-1)^2 = 25 - 9`

`=> (x-1)^2 = 16`

`=> (x-1)^2 = (+-4)^2`

`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

Vậy, `x \in {5; -3}`

\((2x-1)^2-(2x-1)=0\)

`=> (2x-1)(2x-1) - (2x-1)=0`

`=> (2x-1)(2x-1-1)=0`

`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy, `x \in {1; 1/2}`

tdn_luudinhhuy
Xem chi tiết
Alayna
Xem chi tiết
Nguyễn Huy Tú
24 tháng 10 2016 lúc 19:02

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

NaNh Soái Ca^s
4 tháng 11 2019 lúc 21:44

Có phải ở sách NCPT ko bn

Khách vãng lai đã xóa
soyeon_Tiểubàng giải
24 tháng 10 2016 lúc 20:09

Bài 2: Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3B=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6B-2B=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4B=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{203}{3^{100}}< 3\)

\(B< \frac{3}{4}\left(đpcm\right)\)

Lê Phương Uyên
Xem chi tiết
Đức Phạm
19 tháng 7 2017 lúc 13:54

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\text{(đpcm) }\)

Đinh Xuân Hoàng
Xem chi tiết
Akai Haruma
22 tháng 9 lúc 14:42

Lời giải:

$A=1(1+1)+2(2+1)+3(3+1)+....+98(98+1)$

$=(1.1+2.2+3.3+...+98.98)+(1+2+3+...+98)$

$=B+(1+2+3+...+98)$

$\Rightarrow A-B=1+2+3+...+98=98.99:2=4851$

Vương Gia Khánh
Xem chi tiết
Mất nick đau lòng con qu...
Xem chi tiết
Phùng Minh Quân
5 tháng 2 2018 lúc 9:59

\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)

\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....8\right).\left(1.2.3.4.....8\right)\)

\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)

\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)

\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)

\(\Leftrightarrow\)\(x=1\)

Vậy \(x=1\)

Phùng Minh Quân
5 tháng 2 2018 lúc 9:02

\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)

\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....16\right).\left(1.2.3.4.....16\right)\)

\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)

\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)

\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)

\(\Leftrightarrow\)\(x=1\)

Vậy \(x=1\)

Vậy 

Passed
Xem chi tiết
Nguyễn Ngọc Quý
17 tháng 8 2015 lúc 21:43

1) \(7.4^x=7.4^3\Leftrightarrow4^x=4^3;x=3\)

2) \(\frac{3}{2.5^x}=\frac{3}{2.5^{12}}\Leftrightarrow5^x=5^{12};x=12\)

\(2^x=2.2^8=2^9;x=9\)

4) \(5.3^x=7.3^5-2.3^5\Leftrightarrow5.3^x=3^5.\left(7-2\right)\)

\(\Leftrightarrow3^5.x=3^5.5;x=5\)